基于Python的大数据零售生鲜超市数据可视化平台与爬虫技术研究




import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from pyecharts.charts import Bar, Line, Pie
from pyecharts import options as opts
from pyecharts.globals import ThemeType
 
# 假设dataframe已经包含了所需的数据和相应的列名
dataframe = pd.DataFrame({
    '商品名称': ['商品A', '商品B', '商品C', '商品D'],
    '销售数量': [100, 120, 80, 130],
    '销售金额': [10000, 12000, 8000, 13000],
    '客单价': [100, 150, 80, 120]
})
 
# 创建条形图
bar = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add_xaxis(dataframe['商品名称'].tolist())
    .add_yaxis('销售数量', dataframe['销售数量'].tolist())
    .add_yaxis('销售金额', dataframe['销售金额'].tolist())
    .set_global_opts(title_opts=opts.TitleOpts(title="销售分析"))
)
bar.render('bar_chart.html')
 
# 创建线形图
line = (
    Line(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add_xaxis(dataframe['商品名称'].tolist())
    .add_yaxis('客单价', dataframe['客单价'].tolist())
    .set_global_opts(title_opts=opts.TitleOpts(title="客单价趋势分析"))
)
line.render('line_chart.html')
 
# 创建饼图
pie = (
    Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add('', [list(z) for z in zip(dataframe['商品名称'], dataframe['销售金额'])])
    .set_global_opts(title_opts=opts.TitleOpts(title="销售金额占比分析"))
)
pie.render('pie_chart.html')
 
# 爬虫技术研究部分(示例)
import requests
from bs4 import BeautifulSoup
 
url = "http://example.com/retail_data"
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
 
# 假设我们需要爬取的数据是商品名称和价格
product_names = soup.find_all('div', class_='product-name')
product_prices = soup.find_all('div', class_='product-price')
 
# 将爬取的数据保存到dataframe中
dataframe = pd.DataFrame({
    '商品名称': [name.text for name in product_names],
    '商品价格': [price.text for price in product_prices]
})
 
# 存储dataframe到CSV文件
dataframe.to_csv('product_data.csv', index=False)

这个代码示例展示了如何使用Python的Pandas、NumPy、Matplotlib、Seaborn和Pyecharts库来创建数据可视化图表,并使用BeautifulSoup来进行简单的网页数据爬取。这个流程是数据分析和可视化平台设计中的一个常见实践。

最后修改于:2024年08月08日 09:08

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日