import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
# 假设data是包含医疗保险数据的DataFrame
data = pd.read_csv('data.csv') # 替换为你的数据文件路径
# 分离特征和目标变量
X = data[['feature1', 'feature2', 'feature3']]
y = data['target']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建和训练随机森林模型
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# 进行预测
y_pred = model.predict(X_test)
# 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
# 保存模型
from joblib import dump
dump(model, 'model.joblib')
# 注意:以上代码需要提前安装pandas、scikit-learn、joblib库,并且有包含特征'feature1', 'feature2', 'feature3'和目标变量'target'的数据文件。
这段代码展示了如何使用Python进行医疗保险价格的预测分析,其中包括数据读取、特征选择、模型训练、验证和保存。这是一个基于随机森林的回归模型,适用于那些希望了解如何在实际医疗保险价格预测场景中应用机器学习技术的开发者。