LangChain + Elasticsearch:构建强大 RAG 应用的实战指南

本文带你系统性掌握如何基于 LangChain 框架与 Elasticsearch 向量数据库,搭建高效稳定的 RAG(Retrieval-Augmented Generation)应用。通过详细图解与代码实战,从文档加载、向量化、存储、检索到生成逐步实现,适用于企业知识库、金融问答、政务助手等场景。

📚 目录

  1. 什么是 RAG?为什么选择 LangChain + Elasticsearch?
  2. 系统架构与工作流程图解
  3. 技术选型与环境准备
  4. 步骤一:加载与切分文档
  5. 步骤二:生成向量并存储至 Elasticsearch
  6. 步骤三:构建 LangChain 检索器
  7. 步骤四:集成 LLM 进行问答生成
  8. 实战完整代码示例
  9. 常见问题与优化建议
  10. 总结与延伸应用

一、什么是 RAG?为什么选择 LangChain + Elasticsearch?

✅ 什么是 RAG(Retrieval-Augmented Generation)?

RAG = 检索增强生成
核心思想:将检索到的文档作为上下文输入大模型,以提高问答的准确性与可信度

传统 LLM 的问题:

  • 无法访问最新知识
  • 上下文受限
  • 胡说八道(hallucination)

RAG 架构提供了解决方案:

用户问题 → 检索相关文档 → 携带文档上下文 → LLM 生成回答

✅ 为什么选 LangChain + Elasticsearch?

能力LangChainElasticsearch
向量检索封装
Chunk 文档切分
向量存储支持多后端原生支持 HNSW 向量检索
LLM 调用支持 OpenAI、Qwen、glm 等
适合大型文档

二、系统架构与工作流程图解(文字图)

               +------------------------+
               |      用户问题输入       |
               +-----------+------------+
                           |
                           v
                [嵌入模型encode问题向量]
                           |
                           v
       +-------------------+------------------+
       |   Elasticsearch 向量索引库搜索 TopK   |
       +-------------------+------------------+
                           |
           返回匹配段落(上下文文档集合)
                           |
                           v
        [LangChain + LLM 将文档作为上下文]
                           |
                           v
                  +------------------+
                  |   生成最终回答    |
                  +------------------+

三、技术选型与环境准备

🧰 Python 库安装

pip install langchain elasticsearch sentence-transformers openai

可选:

  • 使用本地 LLM:如 qwen, chatglm, llama-cpp
  • Elasticsearch 要求:版本 ≥ 8.x

四、步骤一:加载与切分文档(LangChain 文档加载器)

from langchain.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter

# 读取文档
loader = TextLoader("docs/社保政策.txt", encoding="utf-8")
documents = loader.load()

# 切分为小段落(chunk)
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500,
    chunk_overlap=50
)
docs = text_splitter.split_documents(documents)

五、步骤二:生成向量并存储至 Elasticsearch

嵌入模型初始化

from langchain.embeddings import HuggingFaceEmbeddings

embedding = HuggingFaceEmbeddings(
    model_name="BAAI/bge-base-zh",
    model_kwargs={"device": "cpu"}
)

向 Elasticsearch 存储向量数据

from langchain.vectorstores import ElasticsearchStore

vectorstore = ElasticsearchStore.from_documents(
    documents=docs,
    embedding=embedding,
    es_url="http://localhost:9200",
    index_name="rag_docs"
)

💡 默认使用 dense_vector 类型,可自动创建向量索引结构。


六、步骤三:构建 LangChain 检索器

retriever = vectorstore.as_retriever(
    search_type="similarity",
    search_kwargs={"k": 5}
)

此 retriever 会接收用户输入,自动生成向量并从 Elasticsearch 检索前 5 个相关段落。


七、步骤四:集成 LLM 进行问答生成

你可以选择调用:

  • OpenAI GPT-4
  • 通义千问 Qwen
  • 本地 LLM(如 ChatGLM)

示例:使用 OpenAI Chat 模型

from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)

qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=retriever,
    return_source_documents=True
)

八、实战完整代码示例(End-to-End)

from langchain.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import ElasticsearchStore
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA

# 加载与切分
loader = TextLoader("docs/社保政策.txt", encoding="utf-8")
docs = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50).split_documents(loader.load())

# 向量化
embedding = HuggingFaceEmbeddings(model_name="BAAI/bge-base-zh")

# 存储到 Elasticsearch 向量数据库
vectorstore = ElasticsearchStore.from_documents(
    documents=docs,
    embedding=embedding,
    es_url="http://localhost:9200",
    index_name="rag_docs"
)

# 构建 RAG 检索器
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5})
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)

# 查询示例
query = "2024年北京市社保缴费上限是多少?"
result = qa_chain.run(query)

print("🔍 回答:", result)

九、常见问题与优化建议

问题原因建议
向量不准确嵌入模型不匹配领域使用领域特化模型如 bge-finance
检索不到相关文档chunk 过大、分段不合理使用 Recursive 分段 + 重叠
查询慢向量召回 + LLM 生成耗时增加缓存层、减少 top-k
Elasticsearch 查询为空没有创建向量索引使用 index_options: {"type": "hnsw"} 并确保文档入库

🔚 十、总结与延伸应用

模块技术栈
文档加载LangChain Loader
文本分段RecursiveSplitter
向量生成HuggingFace Embeddings(如 BGE)
向量数据库Elasticsearch(支持 HNSW)
LLM 问答ChatOpenAI / Qwen / ChatGLM
应用场景智能客服、政务问答、财税知识库、医学助手

✨ 延伸方向推荐

  • 多文档上传 + 自动索引化服务
  • 多模态 RAG(图像 + 文本)
  • 双阶段检索(ANN + rerank)
  • LangChain Expression Language(LCEL)流程控制

评论已关闭

推荐阅读

AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日
python之plot()和subplot()画图
2024年11月26日
理解 DALL·E 2、Stable Diffusion 和 Midjourney 工作原理
2024年12月01日