Elasticsearch:探索 11 种流行的机器学习算法
    		       		warning:
    		            这篇文章距离上次修改已过436天,其中的内容可能已经有所变动。
    		        
        		                
                在Elasticsearch中,可以使用机器学习功能来应用各种流行的机器学习算法。以下是一些示例:
- 线性回归
 
POST /machine_learning_example/_train/regression
{
  "analysis_config": {
    "bucket_span": "30m"
  },
  "input": {
    "search_size": 100,
    "time_field_name": "timestamp",
    "target_field_name": "value",
    "filter": {
      "range": {
        "timestamp": {
          "gte": "now-30d/d",
          "lt": "now/d"
        }
      }
    }
  },
  "ml": {
    "job_id": "regression_1"
  },
  "output": {
    "prediction_field_name": "prediction"
  }
}- 决策树
 
POST /machine_learning_example/_train/decision_tree
{
  "analysis_config": {
    "bucket_span": "30m"
  },
  "input": {
    "search_size": 100,
    "time_field_name": "timestamp",
    "target_field_name": "value",
    "filter": {
      "range": {
        "timestamp": {
          "gte": "now-30d/d",
          "lt": "now/d"
        }
      }
    }
  },
  "ml": {
    "job_id": "decision_tree_1"
  },
  "output": {
    "prediction_field_name": "prediction"
  }
}- K-means聚类
 
POST /machine_learning_example/_train/kmeans
{
  "analysis_config": {
    "bucket_span": "30m"
  },
  "input": {
    "search_size": 100,
    "time_field_name": "timestamp",
    "target_field_name": "value",
    "filter": {
      "range": {
        "timestamp": {
          "gte": "now-30d/d",
          "lt": "now/d"
        }
      }
    }
  },
  "ml": {
    "job_id": "kmeans_1"
  },
  "output": {
    "prediction_field_name": "prediction"
  }
}这些只是示例,实际应用中可能需要根据数据集和问题进行调整。每个算法都有其特定的参数和配置,需要根据具体情况进行调整。
评论已关闭