Elasticsearch:探索 11 种流行的机器学习算法
在Elasticsearch中,可以使用机器学习功能来应用各种流行的机器学习算法。以下是一些示例:
- 线性回归
POST /machine_learning_example/_train/regression
{
"analysis_config": {
"bucket_span": "30m"
},
"input": {
"search_size": 100,
"time_field_name": "timestamp",
"target_field_name": "value",
"filter": {
"range": {
"timestamp": {
"gte": "now-30d/d",
"lt": "now/d"
}
}
}
},
"ml": {
"job_id": "regression_1"
},
"output": {
"prediction_field_name": "prediction"
}
}
- 决策树
POST /machine_learning_example/_train/decision_tree
{
"analysis_config": {
"bucket_span": "30m"
},
"input": {
"search_size": 100,
"time_field_name": "timestamp",
"target_field_name": "value",
"filter": {
"range": {
"timestamp": {
"gte": "now-30d/d",
"lt": "now/d"
}
}
}
},
"ml": {
"job_id": "decision_tree_1"
},
"output": {
"prediction_field_name": "prediction"
}
}
- K-means聚类
POST /machine_learning_example/_train/kmeans
{
"analysis_config": {
"bucket_span": "30m"
},
"input": {
"search_size": 100,
"time_field_name": "timestamp",
"target_field_name": "value",
"filter": {
"range": {
"timestamp": {
"gte": "now-30d/d",
"lt": "now/d"
}
}
}
},
"ml": {
"job_id": "kmeans_1"
},
"output": {
"prediction_field_name": "prediction"
}
}
这些只是示例,实际应用中可能需要根据数据集和问题进行调整。每个算法都有其特定的参数和配置,需要根据具体情况进行调整。
评论已关闭