python开发poc,fofa爬虫批量化扫洞
为了创建一个POC(Proof of Concept)批量化扫洞的爬虫,我们可以使用Python的requests库来请求FOFA的API,并使用concurrent.futures库来实现并发处理。以下是一个简单的示例:
import requests
from concurrent.futures import ThreadPoolExecutor
# FOFA API 参数配置
API_URL = "https://fofa.info/api/v1/search/all"
EMAIL = "your_email@example.com"
KEY = "your_api_key"
QUERY = "protocol=\"http\"" # 这里填写你的FOFA查询语言
def search_fofa(query):
params = {
"email": EMAIL,
"key": KEY,
"qbase64": query
}
response = requests.get(API_URL, params=params)
if response.status_code == 200:
return response.json()
else:
print("Error:", response.status_code)
return None
def main():
# 编码查询并构造线程数
query = requests.utils.quote(QUERY)
threads = 10
# 使用ThreadPoolExecutor并发执行搜索
with ThreadPoolExecutor(max_workers=threads) as executor:
future_to_search = {executor.submit(search_fofa, query): query for _ in range(threads)}
for future in concurrent.futures.as_completed(future_to_search):
query = future_to_search[future]
try:
data = future.result()
if data:
# 处理返回的数据
print(f"Query: {query}, Results: {len(data['results'])}")
except Exception as exc:
print(f"{query} generated an exception: {exc}")
if __name__ == "__main__":
main()
在这个例子中,我们定义了search_fofa
函数来发送请求到FOFA API,并定义了main
函数来并发执行搜索。我们使用了requests库来编码查询语句,并使用ThreadPoolExecutor来并发执行多个搜索请求。
请注意,你需要替换EMAIL
和KEY
变量值为你的FOFA账户信息,并且根据需要调整QUERY
来设置你的搜索条件。此外,你可能需要处理返回的数据以及异常情况,并根据FOFA API的限制来调整线程数和查询语句。
评论已关闭