智慧交通数据分析系统 python 时间序列预测算法 爬虫 出行速度预测 拥堵预测




import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from statsmodels.tsa.arima_model import ARIMA
from fbprophet import Prophet
 
# 读取数据
data = pd.read_csv('data.csv')
 
# 数据预处理
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(data['count'].values.reshape(-1, 1))
data_scaled = pd.DataFrame(data_scaled, columns=['count_scaled'])
 
# 训练ARIMA模型
def train_arima(data, p, d, q):
    model = ARIMA(data, order=(p, d, q))
    model_fit = model.fit()
    return model_fit
 
# 使用Prophet模型
def train_prophet(data):
    model = Prophet()
    data['y'] = data['count_scaled']
    model.fit(data[['ds', 'y']])
    return model
 
# 预测
def predict(model, steps_ahead):
    future = model.make_future_dataframe(periods=steps_ahead)
    forecast = model.predict(future)
    return scaler.inverse_transform(forecast['yhat'].values)
 
# 选择合适的ARIMA参数
p, d, q = 0, 1, 1  # 示例参数
model_arima = train_arima(data_scaled, p, d, q)
forecast_arima = predict(model_arima, 30)  # 预测30天
 
# 使用Prophet模型进行预测
model_prophet = train_prophet(data_scaled)
forecast_prophet = predict(model_prophet, 30)  # 预测30天
 
# 计算MSE
mse_arima = mean_squared_error(data_scaled['count_scaled'].values, forecast_arima)
mse_prophet = mean_squared_error(data_scaled['count_scaled'].values, forecast_prophet)
 
# 输出结果
print(f"ARIMA MSE: {mse_arima}")
print(f"Prophet MSE: {mse_prophet}")

这段代码展示了如何使用ARIMA和Prophet模型进行时间序列预测,并计算预测的平均平方误差(MSE)。这是一个实用的教学示例,可以帮助开发者理解如何在实际应用中应用时间序列分析方法。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日