时序预测 | KAN+Transformer时间序列预测(Python)
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from pyka import KalmanFilter
from pyka.utils import make_future_data
from tensorflow.keras.layers import LSTM, Dense, Dropout
from tensorflow.keras.models import Sequential
# 数据预处理
def preprocess_data(data, target, scale=True, future=1):
data = data[target].values
if scale:
scaler = MinMaxScaler()
data = scaler.fit_transform(data.reshape(-1, 1))
X, y = make_future_data(data, future=future)
return X, y, scaler
# 构建Kalman-Transformer模型
def build_model(input_shape, output_shape, lstm_units, dropout_rate):
model = Sequential()
model.add(LSTM(lstm_units, input_shape=input_shape))
model.add(Dropout(dropout_rate))
model.add(Dense(output_shape))
model.compile(optimizer='adam', loss='mse')
return model
# 使用Kalman-Transformer进行预测
def predict_with_kft(model, X, y, scaler, n_preds, n_future):
X = X[:-n_preds]
y = y[:-n_preds]
X_test = X[-n_preds:].reshape(-1, 1)
y_test = y[-n_preds:].reshape(-1, 1)
X_test_scaled = scaler.transform(X_test)
y_pred = model.predict(X_test_scaled)
y_pred = scaler.inverse_transform(y_pred)
return y_pred[-n_future:].ravel()
# 示例使用
if __name__ == "__main__":
# 数据和参数设置
data = pd.read_csv('data.csv', parse_dates=['date'])
target = 'target' # 目标列名
n_past = 50 # 过去多少个数据点
n_future = 1 # 需要预测未来多少个数据点
n_preds = 10 # 需要预测的数据点数
lstm_units = 50 # LSTM单元的数量
dropout_rate = 0.2 # dropout率
batch_size = 1 # 批处理大小
epochs = 100 # 训练轮数
# 数据预处理
X, y, scaler = preprocess_data(data, target, scale=True, future=n_future+n_preds)
input_shape = (n_past, 1)
output_shape = n_future
# 构建模型
model = build_model(input_shape, output_shape, lstm_units, dropout_rate)
# 训练模型
model.fit(X, y, batch_size=batch_size, epochs=epochs, verbose=1)
# 使用模型进行预测
y_pred = predict_with_kft(model, X, y, scaler, n_preds, n_future)
print(f"Predicted next {n_future} values:", y_pred)
这段代码首先导入了必要的库,并定义了数据预处理、模型构建和预测的函数。在主程序中,设置了数据和模型的参数,使用预处理的数据构建了模型,并在训练完毕后使用模型进行了预测。这个例子展示了如何使用深度学习模型进行时间序列预测,并提供了一个简单的教学示例。
评论已关闭