python爬虫实战——小红书_python小红书爬虫




import requests
from bs4 import BeautifulSoup
import re
import pandas as pd
 
# 设置请求头信息,模拟浏览器访问
headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
 
# 定义一个函数来获取小红书的所有帖子
def get_all_posts(url):
    # 发送GET请求
    response = requests.get(url, headers=headers)
    # 解析HTML内容
    soup = BeautifulSoup(response.text, 'lxml')
    # 提取帖子信息
    posts = soup.find_all('div', class_='feed-item-root')
    return posts
 
# 定义一个函数来提取帖子详细信息
def extract_post_info(post):
    try:
        # 提取帖子标题
        title = post.find('a', class_='title-box').text.strip()
        # 提取帖子链接
        post_url = post.find('a', class_='title-box')['href']
        # 提取作者昵称和昵称链接
        author_info = post.find('div', class_='author-info').text.strip()
        author_name = re.search('(.+)', author_info).group(1)
        author_url = post.find('a', class_='author-name')['href']
        # 提取作品类型
        media_type = post.find('div', class_='media-type').text.strip()
        # 提取阅读量
        read_count = post.find('div', class_='read-count').text.strip()
        # 提取点赞数
        like_count = post.find('div', class_='like-count').text.strip()
        # 提取评论数
        comment_count = post.find('div', class_='comment-count').text.strip()
        # 提取发布时间
        publish_time = post.find('div', class_='publish-time').text.strip()
        # 返回所有提取的信息
        return {
            'title': title,
            'url': post_url,
            'author_name': author_name,
            'author_url': author_url,
            'media_type': media_type,
            'read_count': read_count,
            'like_count': like_count,
            'comment_count': comment_count,
            'publish_time': publish_time
        }
    except Exception as e:
        print(f'Error extracting post info: {e}')
        return None
 
# 主函数
def main(max_pages):
    # 初始化帖子列表和页码
    posts = []
    page = 1
    
    # 循环遍历页面
    while page <= max_pages:
        print(f"Crawling page {page}")
        # 构造页面URL
        url = f'https://www.xiaohongshu.com/discovery/trending?page={page}'
        # 获取页面所有帖子
        all_posts = get_all_posts(url)
        # 提取每个帖子的详细信息
        for post in all_posts:
        
最后修改于:2024年08月16日 10:34

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日