由于提供的代码已经相对完整,以下是核心函数的简化版本,展示如何使用PyTorch进行基于ResNet的动物图像分类:
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, models, transforms
 
# 定义ResNet模型
def resnet_model(num_classes, pretrained=True):
    model = models.resnet18(pretrained=pretrained)
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, num_classes)
    return model
 
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
 
# 加载数据
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)
 
testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)
 
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
 
# 训练模型
def train_model(model, criterion, optimizer, epochs=25):
    for epoch in range(epochs):
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            inputs, labels = data
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            if i % 2000 == 1999:
                print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
                running_loss = 0.0
 
# 测试模型
def test_model(model, testloader):
    correct = 0
    total = 0
    with torch.no_grad():
        for data in testloader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
 
# 实例化模型
model = resnet_model(num_classes=10)
 
# 训练和测试模型
train_model(mo