# 导入必要的模块
import requests
from bs4 import BeautifulSoup
import jieba
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import re
# 设置一些基本的常量
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
stopwords = pd.read_csv('stopwords.txt', index_col=False, sep='\t', quoting=3)
stopwords = stopwords['word'].values.tolist()
# 爬取某博文章的热搜标题
def get_baidu_hot_search(date):
url = 'http://top.baidu.com/buzz?b=1&p=1&d=1'
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'lxml')
titles = soup.find_all('a', {'class': 'list-title'})
times = soup.find_all('span', {'class': 'list-num'})
result = []
for title, time in zip(titles, times):
result.append({
'title': title.get_text(),
'search_num': time.get_text()
})
return result
# 获取文本情感倾向
def get_sentiment(text):
# 这里应该是情感分析的代码,例如调用某个情感分析API或者模型
# 返回情感分值,例如正面分值和负面分值
pass
# 分析某一天的热搜情感
def analyze_sentiment_on_day(date):
hot_searches = get_baidu_hot_search(date)
titles = [hs['title'] for hs in hot_searches]
results = []
for title in titles:
# 这里应该是调用情感分析函数,并将结果添加到results列表中
pass
return results
# 绘制热搜词云
def draw_word_cloud(text):
wordlist = jieba.cut(text)
wordspace_split = ' '.join(wordlist)
stopwords_list = stopwords
wordcloud = WordCloud(background_color="white",
mask=plt.imread('china_location_map.png'),
stopwords=stopwords_list,
font_path='simhei.ttf',
max_words=200,
max_font_size=100,
random_state=42)
mywordcloud = wordcloud.generate(wordspace_split)
plt.imshow(mywordcloud)
plt.axis('off')
plt.show()
# 主函数
if __name__ == '__main__':
date = '2020-01-01'
results = analyze_sentiment_on_day(date)
text = ' '.join([result['title'] for result in results])
draw_word_cloud(text)
这个代码实例提供了一个框架,展示了如何使用Python爬取某博热搜数据,并使用结巴分词、去停用词、绘制词云等方法来分析这些数据。这个过程是构建舆情分析系统的一个基本步骤,它教会用户如何进行基本的文本处理和情感