Python - 面向现实世界的人脸复原 GFP-GAN 简介与使用
import torch
from torch import nn
from torch.nn import functional as F
class GFP(nn.Module):
"""
实现人脸复原的GFP模块。
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros'):
super(GFP, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode)
self.gamma = nn.Parameter(torch.ones(1))
self.beta = nn.Parameter(torch.zeros(1))
def forward(self, x):
output = self.conv(x)
norm = torch.sqrt(torch.mean(output ** 2, dim=1, keepdim=True))
output = self.gamma * output / norm + self.beta
return output
# 示例:使用GFP模块
input_tensor = torch.randn(1, 512, 4, 4) # 假设输入特征图大小为4x4
gfp_layer = GFP(512, 512, 3, padding=1)
output_tensor = gfp_layer(input_tensor)
print(output_tensor.shape) # 输出: torch.Size([1, 512, 4, 4])
这个代码实例展示了如何定义一个GFP模块,并使用它对输入的特征图进行处理。在实例化GFP类后,我们创建了一个随机的输入特征图,并通过GFP模块进行转换,最后打印出输出特征图的形状以验证模块的正确性。
评论已关闭