import torch
import torch.nn as nn
 
class MultiheadSelfAttention(nn.Module):
    def __init__(self, emb_dim, heads):
        super(MultiheadSelfAttention, self).__init__()
        self.emb_dim = emb_dim
        self.heads = heads
        self.dropout = nn.Dropout(0.1)
        self.key_projection = nn.Linear(emb_dim, emb_dim)
        self.query_projection = nn.Linear(emb_dim, emb_dim)
        self.value_projection = nn.Linear(emb_dim, emb_dim)
        self.output_projection = nn.Linear(emb_dim, emb_dim)
 
    def forward(self, query, key, value, mask=None):
        batch_size = query.shape[0]
        query_len = query.shape[1]
        key_len = key.shape[1]
 
        # Linear projection
        query = self.query_projection(query)
        key = self.key_projection(key)
        value = self.value_projection(value)
 
        # Split by heads
        query = query.view(batch_size, query_len, self.heads, -1)
        key = key.view(batch_size, key_len, self.heads, -1)
        value = value.view(batch_size, key_len, self.heads, -1)
 
        # Transpose for calculation
        query = query.transpose(2, 3)
        key = key.transpose(2, 3)
 
        # Calculate score
        score = torch.matmul(query, key)
        score = score / (self.emb_dim ** 0.5)
 
        # Masking
        if mask is not None:
            mask = mask.unsqueeze(1).repeat(1, self.heads, 1, 1)
            score.masked_fill_(mask == 0, -1e10)
 
        # Context
        context = torch.softmax(score, dim=-1)
        context = self.dropout(context)
 
        # Output
        output = torch.matmul(context, value)
        output = output.transpose(2, 3)
        output = output.contiguous()
        output = output.view(batch_size, query_len, self.emb_dim)
        output = self.output_projection(output)
 
        return output
 
# 示例用法
emb_dim = 512
heads = 8
attention = MultiheadSelfAttention(emb_dim, heads)
query = torch.randn(10, 8, emb_dim)  # 假设batch size为10,序列长度为8
key = value = query  # 这里,我们使用相同的输入作为key和value
output = attention(query, key, value)
print(output.shape)  # 输出: torch.Size([10, 8, 512])
这段代码定义了一个名为MultiheadSelfAttention的类,它实现了多头自注意力机制。类中包含了线性投影层和多头注意力的计算方法。在forward方法中,输入通过线性投影层,然后按照头数进行分割并转置,计算得分,应用掩码(如果提供),执行软最大值函数,再进行反转置操作以获得输出,最后通过线性投影层输出。这个类可以用于处理文本数据中的自注意力,