2024-08-23



import os
from osgeo import gdal, ogr
 
# 设置输入输出路径
input_shp_path = 'input_mask.shp'
input_tif_folder_path = 'input_tif_folder'
output_tif_folder_path = 'output_tif_folder'
 
# 检查输出文件夹是否存在,不存在则创建
if not os.path.exists(output_tif_folder_path):
    os.makedirs(output_tif_folder_path)
 
# 打开shapefile
shp_ds = ogr.Open(input_shp_path, 0)
shp_layer = shp_ds.GetLayer()
 
# 遍历shapefile中的每个要素
for feature in shp_layer:
    geom = feature.GetGeometryRef()
    
    # 打开tif文件
    tif_names = os.listdir(input_tif_folder_path)
    for tif_name in tif_names:
        input_tif_path = os.path.join(input_tif_folder_path, tif_name)
        output_tif_path = os.path.join(output_tif_folder_path, os.path.splitext(tif_name)[0] + '_masked.tif')
        
        # 读取raster数据
        src_ds = gdal.Open(input_tif_path, gdal.GA_ReadOnly)
        if src_ds is None:
            print(f'Could not open {input_tif_path}')
            continue
        
        # 创建masked raster
        mem_drv = gdal.GetDriverByName('GTiff')
        mem_ds = mem_drv.CreateCopy('', src_ds, 0, ['INTERLEAVE=PIXEL', 'COMPRESS=LZW'])
        
        # 应用掩膜
        gdal.SetConfigOption('GDAL_FILENAME_IS_UTF8', 'YES')
        gdal.RasterizeLayer(mem_ds, [1], shp_layer, options=['ATTRIBUTE=FID'])
        
        # 保存masked raster
        mem_ds.SetProjection(src_ds.GetProjection())
        mem_ds.SetGeoTransform(src_ds.GetGeoTransform())
        mem_ds = None
        
        # 重命名masked raster
        os.rename(output_tif_path.replace('.tif', '_tmp.tif'), output_tif_path)
 
# 关闭shapefile
shp_ds = None

这段代码使用了GDAL库来读取和处理GeoTiff数据,并且使用OGR库来读取Shapefile中的多边形掩膜。它会遍历一个文件夹内所有的GeoTiff文件,并将它们与Shapefile中的多边形进行匹配,然后将不属于多边形区域内的像素裁剪掉,形成一个新的masked GeoTiff文件。

2024-08-23

在Python中,可以使用format函数或者字符串格式化方法来将小数转换为百分数并输出。以下是一个例子:




# 假设有一个小数变量
decimal_number = 0.85
 
# 使用format函数将小数转换为百分数
percentage_string = format(decimal_number, '.2%')
 
# 打印结果
print(percentage_string)  # 输出: 85.00%
 
# 或者使用字符串格式化
print(f"{decimal_number:.2%}")  # 输出: 85.00%

在这个例子中,.2%指定了保留两位小数的百分数格式。如果你想要不同的小数位数,可以调整数字来改变精度。

2024-08-23

由于篇幅限制,这里只展示部分代码,具体的信用评分卡建模流程请参考原文链接。




# 导入必要的库
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score
 
# 读取数据
data = pd.read_csv('credit_card_data.csv')
 
# 分割特征和目标
X = data.drop(['target'], axis=1)
y = data['target']
 
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
 
# 特征工程:标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
 
# 建模:逻辑回归
model = LogisticRegression()
model.fit(X_train_scaled, y_train)
 
# 预测
y_pred = model.predict_proba(X_test_scaled)[:,1]
 
# 评估:AUC
auc_score = roc_auc_score(y_test, y_pred)
print(f'AUC Score: {auc_score}')

这段代码展示了如何进行信用卡欺诈检测,包括数据读取、分割特征和目标、数据划分、特征工程(标准化)、模型训练和预测以及评估模型性能。这是金融场景中常见的一个机器学习项目流程。

2024-08-23



import json
from jsondiff import diff
 
# 假设有两个JSON对象
json1 = {
    "name": "John",
    "age": 30,
    "city": "New York"
}
 
json2 = {
    "name": "John",
    "age": 31,
    "city": "Los Angeles"
}
 
# 使用jsondiff库的diff函数比较两个JSON对象
difference = diff(json1, json2)
 
# 打印出差异
print(difference)

这段代码演示了如何使用jsondiff库来比较两个JSON对象之间的差异。diff函数会返回一个描述两个JSON对象差异的字符串。这个库需要先通过pip install jsondiff命令安装。

2024-08-23

报错问题解释:

这个报错通常意味着Python环境中没有安装pycryptodome库,或者安装的版本不兼容。Crypto.Cipherpycryptodome库中用于提供加密算法的模块,特别是AES算法。

解决方法:

  1. 确保你有一个兼容的pycryptodome库安装在你的Python环境中。可以使用pip安装或更新它:

    
    
    
    pip install pycryptodome

    或者,如果你使用的是Python 3.x,可能需要安装pycryptodomex,因为pycryptodome不再支持Python 3.x:

    
    
    
    pip install pycryptodomex
  2. 如果你已经安装了pycryptodomepycryptodomex,但仍然遇到问题,请尝试更新到最新版本:

    
    
    
    pip install --upgrade pycryptodome

    
    
    
    pip install --upgrade pycryptodomex
  3. 如果更新不起作用,检查你的Python环境是否有多个版本,并确保你的代码运行在正确的Python解释器上,该解释器应该与你安装pycryptodomepycryptodomex的环境一致。
  4. 如果你正在使用虚拟环境,确保你的IDE或命令行终端已经激活了相应的虚拟环境。
  5. 如果你的代码中有特定的导入路径,确保它们是正确的。有时候,库的安装路径会因为安装方式或Python版本的不同而改变。

如果以上步骤都不能解决问题,可能需要检查你的Python环境的兼容性问题,或者查看更详细的错误信息来进一步诊断问题。

2024-08-23

这个错误信息是Python中NumPy库的一个常见错误,完整的错误可能是:"TypeError: only integer scalar arrays can be converted to a scalar index"。这个错误通常发生在尝试使用NumPy数组作为索引访问另一个数组时,但提供的索引不是整数标量。

解决方法:

  1. 确保你使用的索引是单个整数值,而不是一个数组或多个值。
  2. 如果你需要使用多个索引,确保它们被正确地放在一个数组中,并且这个数组是一个整数的一维数组。

例如,如果你有一个数组arr和一个索引数组indices,你想要使用这个indices数组来访问arr中的元素,你应该这样做:




import numpy as np
 
arr = np.array([10, 20, 30, 40, 50])
indices = np.array([1, 3])  # 确保indices是整数的一维数组
 
# 使用indices作为索引访问arr
values = arr[indices]  # 这是正确的使用方式

如果你尝试这样做:




wrong_indices = np.array([1.5, 3.2])  # 如果indices包含浮点数,这将导致错误
values = arr[wrong_indices]  # 这会引发TypeError

确保所有用于索引的数组只包含整数值。如果你有浮点数或其他类型的值,你需要先将它们转换为整数,或者修改索引逻辑以避免这个错误。

2024-08-23

PyTorch版本与Python版本和Torchtext版本之间有相互关联,并且它们必须相互兼容。以下是一些常见的PyTorch版本、Python版本和Torchtext版本之间的对应关系:

PyTorch版本Python版本Torchtext版本

1.11.03.7-3.90.15.0

1.10.03.7-3.90.14.0

1.9.03.7-3.90.13.0

1.8.03.7-3.90.12.0

1.7.03.6-3.80.11.0

1.6.03.6-3.80.10.0

1.5.03.6-3.80.9.0

1.4.03.6-3.80.8.0

1.3.03.6-3.80.7.0

1.2.03.6-3.80.6.0

1.1.03.6-3.80.5.0

1.0.03.6-3.80.4.0

0.4.23.5-3.60.3.1

为了确保兼容性,你应该安装与你的PyTorch版本相对应的Python版本,并且安装与PyTorch版本匹配的Torchtext版本。例如,如果你打算安装PyTorch 1.11.0,你应该使用Python 3.7到3.9,并且应该安装Torchtext 0.15.0。

安装指令示例:




# 安装PyTorch
pip install torch==1.11.0
 
# 安装与PyTorch 1.11.0相匹配的Python版本
# 这里假设你使用的是3.7
 
# 安装Torchtext
pip install torchtext==0.15.0

请注意,版本之间的兼容性可能随着新版本的发布而变化,因此建议参考PyTorch官方文档以获取最新的兼容信息。

2024-08-23



import time
import requests
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
 
# 初始化webdriver
driver_path = '/path/to/chromedriver'  # 更改为你的ChromeDriver路径
options = webdriver.ChromeOptions()
options.add_argument('--headless')  # 如果你想在后台运行,可以添加这个参数
driver = webdriver.Chrome(executable_path=driver_path, options=options)
 
# 目标网址
url = 'http://example.com'
 
# 打开网页
driver.get(url)
 
# 等待Cloudflare的JavaScript完成加载
try:
    WebDriverWait(driver, 20).until(EC.presence_of_element_located((By.ID, "cf-content")))
finally:
    print("Cloudflare JavaScript加载完成。")
 
# 暂停5秒,以符合Cloudflare的处理
time.sleep(5)
 
# 继续你的爬虫工作...
page_content = driver.page_source
 
# 清理工作
driver.quit()
 
# 处理页面内容
print(page_content)

这段代码使用了Selenium WebDriver来处理JavaScript动态内容,并通过WebDriverWait和expected\_conditions来等待Cloudflare的JavaScript加载完成。在加载完成后,代码暂停了5秒钟,以符合Cloudflare的处理,然后继续进行爬取工作。最后,代码清理了webdriver实例,并打印了页面内容以供进一步处理。

2024-08-23

在Python中,清空控制台的方法取决于你使用的操作系统。以下是一些常用的方法:

  1. 使用 os 模块的 system 方法:



import os
os.system('cls' if os.name == 'nt' else 'clear')

这段代码会在Windows上使用cls命令,在Unix或Mac上使用clear命令来清空控制台。

  1. 使用 subprocess 模块:



import subprocess
subprocess.call('cls' if os.name == 'nt' else 'clear')

这是另一种跨平台清空控制台的方法。

  1. 使用第三方库 colorama



from colorama import AnsiToWin32
AnsiToWin32(None).write('\x1b[2J\x1b[H')

colorama 库可以在所有平台上模拟ANSI转义序列。

请注意,这些方法只能清空当前控制台窗口中的内容,不能删除其他程序的控制台输出。

2024-08-23



import matplotlib.pyplot as plt
 
# 设置图表样式
plt.style.use('seaborn-whitegrid')
 
# 创建数据
x = range(1, 11)
y = [i**2 for i in x]
 
# 绘制图形
plt.plot(x, y, color='darkorange', linestyle='--', marker='o', label='曲线')
 
# 设置图例的位置
plt.legend(loc='upper left')
 
# 设置坐标轴的标签
plt.xlabel('x轴')
plt.ylabel('y轴')
 
# 设置标题
plt.title('示例图形')
 
# 显示网格
plt.grid(True)
 
# 显示图形
plt.show()

这段代码展示了如何使用Python的matplotlib库来绘制一个简单的图形,并设置了颜色、线型、标记、图例和标签等元素。同时,代码中使用了plt.style.use()来应用一个样式,使图表看起来更加专业。