2024-08-09

该服务系统主要提供老年人在家中养老的相关服务,如健康监测、日常事务管理、健身计划等。系统使用Node.js作为后端开发语言,并提供了免费的源代码和数据库下载。

以下是一个简单的代码示例,展示如何使用Express框架在Node.js中设置一个基本的服务器:




const express = require('express');
const app = express();
const port = 3000;
 
// 中间件,用于解析JSON格式的请求体
app.use(express.json());
 
// 用于健康监测的API路由
app.get('/health-monitoring', (req, res) => {
  // 假设这里有逻辑来获取或处理监测数据
  const healthData = {
    bloodPressure: 120,
    heartRate: 70,
    // 其他健康指标...
  };
  res.json(healthData);
});
 
// 服务器启动
app.listen(port, () => {
  console.log(`服务器运行在 http://localhost:${port}`);
});

在实际应用中,你需要根据系统的具体需求设计数据库模型、API端点以及相关的业务逻辑。

请注意,上述代码仅为示例,并且没有包含完整的系统实现。实际的系统将需要更复杂的逻辑,包括身份验证、权限管理、错误处理等。

2024-08-09

由于原始代码已经是一个很好的示例,以下是一个简化的核心函数,展示如何使用Swift爬取网页上的数据并进行解析:




import Foundation
 
// 假设这是一个用于网络请求的Swift库
let url = URL(string: "https://example.com/data.json")!
var request = URLRequest(url: url)
request.httpMethod = "GET"
 
let task = URLSession.shared.dataTask(with: request) { (data, response, error) in
    // 确保没有错误发生,并且有数据返回
    guard let data = data, error == nil else {
        print("Error: \(error?.localizedDescription ?? "Unknown error")")
        return
    }
    
    // 尝试解析JSON数据
    do {
        if let jsonObject = try JSONSerialization.jsonObject(with: data) as? [String: Any] {
            // 成功解析JSON,这里可以进行数据处理
            print("JSON: \(jsonObject)")
        }
    } catch {
        print("JSON解析错误: \(error.localizedDescription)")
    }
}
 
task.resume() // 启动任务

这段代码演示了如何使用URLSession发送一个简单的GET请求,并处理返回的JSON数据。在实际应用中,你需要处理网络请求的异步性,并且添加错误处理和更复杂的数据解析逻辑。

2024-08-09



import requests
 
# 发送AJAX请求的示例函数
def send_ajax_request(url, session, headers=None):
    try:
        response = session.get(url, headers=headers, timeout=5)
        if response.status_code == 200:
            return response.json()
        else:
            print(f"请求失败,状态码: {response.status_code}")
    except requests.exceptions.RequestException as e:
        print(f"请求出错: {e}")
    except requests.exceptions.Timeout as e:
        print(f"请求超时: {e}")
    except requests.exceptions.TooManyRedirects as e:
        print(f"重定向过多: {e}")
    except requests.exceptions.HTTPError as e:
        print(f"HTTP错误: {e}")
    except requests.exceptions.ConnectionError as e:
        print(f"连接错误: {e}")
    except requests.exceptions.SSLError as e:
        print(f"SSL错误: {e}")
 
# 使用示例
url = "https://api.example.com/data"
headers = {"User-Agent": "My User Agent 1.0"}
 
# 创建一个requests.Session实例
session = requests.Session()
 
# 发送AJAX请求
send_ajax_request(url, session, headers)

这个代码示例展示了如何使用requests库来发送AJAX请求,并处理可能出现的异常。它创建了一个requests.Session实例来管理cookie,并且在发送请求时指定了headers。对于出现的异常,它打印出错误信息,这有助于调试和了解发生了什么。

2024-08-09

由于提供的信息不足以精确地回答这个问题,我将提供一个通用的解决方案模板,用于创建一个简单的在线课题设计系统。

首先,确保你已经安装了Django。如果没有,可以通过以下命令安装:




pip install django

接下来,创建一个新的Django项目:




django-admin startproject my_subject_design_system
cd my_subject_design_system

然后,创建一个应用:




python manage.py startapp courses

models.py中定义你的数据模型:




# courses/models.py
from django.db import models
 
class Course(models.Model):
    title = models.CharField(max_length=200)
    description = models.TextField()
    estimated_duration = models.DurationField()
    # 其他相关字段...

接下来,定义数据库迁移:




python manage.py makemigrations
python manage.py migrate

创建管理员账号:




python manage.py createsuperuser

运行开发服务器:




python manage.py runserver

这样,一个简单的课题设计系统的后端就搭建好了。前端部分需要使用HTML/CSS/JavaScript和可能的框架(如Bootstrap、Vue.js等)来创建。

注意:这个示例只包含了后端的基础框架。实际的课题设计系统需要更多的功能,如用户认证、权限管理、前后端的API接口设计等。这些将需要更详细的设计和编码实现。

2024-08-09



import scrapy
 
class MySpider(scrapy.Spider):
    name = 'myspider'
    start_urls = ['http://example.com/pages/']
 
    # 解析列表页面,获取详情页链接
    def parse(self, response):
        # 提取详情页链接并生成爬取请求
        for href in response.css('a::attr(href)').getall():
            if 'details' in href:
                yield response.follow(href, self.parse_details)
 
    # 解析详情页面,提取需要的数据
    def parse_details(self, response):
        # 提取数据并组成字典
        item = {
            'title': response.css('h1::text').get(),
            'description': response.css('p::text').get(),
            # 更多字段...
        }
        yield item  # 提交数据

这段代码定义了一个Scrapy爬虫,它会从一个网页列表开始,根据详情页的链接爬取数据,并提取页面上的标题和描述信息。这个例子展示了如何在Scrapy中创建一个简单的爬虫,并使用CSS选择器提取页面数据。

2024-08-09

爬虫逆向涉及法律和道德的界限,我不能提供直接的代码解决方案。然而,我可以提供一个简化的Python示例来说明如何使用pycryptodome库进行SM3和SM4加密。

首先,安装pycryptodome库:




pip install pycryptodome

然后,使用以下代码进行SM3和SM4加密:




from Crypto.Hash import SM3
from Crypto.Cipher import SM4
from binascii import b2a_hex, a2b_hex
 
# SM3加密
def sm3_encrypt(message):
    h = SM3.new()
    h.update(message.encode('utf-8'))
    return h.hexdigest()
 
# SM4加密
def sm4_encrypt(key, message):
    cipher = SM4.new(key, SM4.MODE_ECB)
    pad_msg = message.encode('utf-8')
    pad_msg += b'\0' * (16 - (len(message) % 16))
    encrypted = cipher.encrypt(pad_msg)
    return b2a_hex(encrypted).decode('utf-8')
 
# 使用示例
key = b'1234567890abcdef'  # 16字节的密钥
message = 'Hello World'
 
encrypted_sm3 = sm3_encrypt(message)
encrypted_sm4 = sm4_encrypt(key, message)
 
print('SM3 Encrypted:', encrypted_sm3)
print('SM4 Encrypted:', encrypted_sm4)

请注意,这个示例使用ECB模式进行SM4加密,这不是最安全的模式,它会导致明文的重复。在实际应用中,请考虑使用CBC模式并提供一个初始向量(IV)。

再次强调,爬虫逆向涉及法律和道德的问题,我不能提供实战用于非法目的的代码。如果您有合法的、得到授权的需求,请遵循相关法律法规和网站的robots.txt规则。

2024-08-09

Pholcus是一款基于Go语言开发的分布式网络爬虫框架。为了使用Pholcus抓取网易云的图片,你需要做以下几步:

  1. 安装Pholcus。
  2. 编写一个爬虫脚本,指定网易云相册的URL模板和需要抓取的图片的选择器。
  3. 运行爬虫脚本。

以下是一个简单的爬虫脚本示例,用于抓取网易云相册中的图片URL:




// 导入必要的包
package main
 
import (
    "github.com/henrylee2cn/pholcus/app"
    . "github.com/henrylee2cn/pholcus/app/downloader/context"
)
 
// 初始化一个爬虫任务
func init() {
    app.RegistDownloader(&TestDownloader{})
}
 
type TestDownloader struct {
    Saver
}
 
// 抓取入口
func (d *TestDownloader) Start(thread int, _ *HeavyJob) {
    var spider = app.Spider{
        Name:           "163_music_album",
        ThreadNum:      thread,
        Task: &app.Task{
            UrlTemplate: "http://music.163.com/artist/album?id=1762628&limit=18&offset=#off#", // 修改为具体的相册URL
            Rule:        "a.f",
            Temp: map[string]string{
                "a": {
                    "Regex": "\
<div class="katex-block">\[object Object\\]</div>
",
                },
                "f": {
                    "Selector": "img",
                    "Attr":     "data-src",
                },
            },
        },
        SuccessExport: &app.SuccessExport{
            ItemFields: []string{"f"},
        },
    }
    spider.Start()
}

在这个脚本中,你需要替换UrlTemplate的值为具体的网易云相册URL。Rule是用于生成多个URL的规则,Temp中定义了如何选择图片的选择器和属性。

运行这个脚本,Pholcus会根据你提供的规则抓取网易云相册中的图片URL,并将它们导出到指定的文件中。

请注意,爬取网站数据时,应遵守相关的法律法规,并尊重网站的robots.txt规则以及隐私政策。在使用爬虫时,确保你有权限抓取目标网站的数据,并且不会对网站造成过大压力。

2024-08-09

爬取小说网站的示例代码可以在互联网上找到,但是由于版权和法律原因,我不能提供具体的项目源代码。不过,我可以提供一个使用BeautifulSoup库的基本示例来帮助你入门。

以下是一个简单的爬取小说网站章节内容的示例代码:




import requests
from bs4 import BeautifulSoup
 
# 目标网站的URL
url = 'http://example.com/novel/chapter1.html'
 
# 发送HTTP请求
response = requests.get(url)
 
# 确保网页正确加载
if response.status_code == 200:
    # 使用BeautifulSoup解析网页
    soup = BeautifulSoup(response.text, 'html.parser')
    
    # 找到包含小说内容的元素,这里需要根据实际网页结构修改选择器
    content = soup.find('div', id='novel-content')
    
    # 打印小说章节内容
    print(content.get_text())
else:
    print("网页获取失败")

这段代码仅作为入门示例,实际应用时需要根据目标网站的HTML结构进行相应的调整。对于具体的小说网站,你需要分析网页的结构,找到包含小说内容的元素,并修改选择器来提取这些数据。

请注意,爬取网站数据时应遵守相关的法律法规,并尊重网站的robots.txt协议以及版权政策。不应滥用爬虫技术对网站造成过大的负担,或者未经允许获取内容。

2024-08-09

在Python中,你可以使用requests库配合一个公共IP检测接口来获取当前的公网IP地址。以下是一个使用requests库获取当前公网IP地址的示例代码:




import requests
 
def get_current_ip():
    # 使用一个公共服务来获取当前的IP地址
    ip_check_url = 'https://api.ipify.org'
    response = requests.get(ip_check_url)
    if response.status_code == 200:
        return response.text
    else:
        raise Exception('Failed to retrieve current IP address')
 
# 使用函数获取IP地址
current_ip = get_current_ip()
print(f'当前公网IP地址是: {current_ip}')

请注意,这种方法并不是通过代理获取IP地址,而是直接调用一个可以返回请求者公网IP的服务。如果你需要通过代理来获取IP地址,你需要配置requests库使用代理服务器,例如:




proxies = {
  'http': 'http://user:password@proxy.server:port',
  'https': 'https://user:password@proxy.server:port',
}
 
response = requests.get('https://api.ipify.org', proxies=proxies)

在这个例子中,你需要替换user, password, proxy.server, 和 port为你的代理服务器的实际登录信息和地址。

2024-08-09

以下是一个简单的Python网络爬虫示例,使用requests库获取网页内容,并使用BeautifulSoup库解析网页。

首先,需要安装必要的库(如果尚未安装的话):




pip install requests beautifulsoup4

然后,是爬虫的实现:




import requests
from bs4 import BeautifulSoup
 
def fetch_website_content(url):
    response = requests.get(url)
    if response.status_code == 200:
        return response.text
    else:
        return "Error: Failed to retrieve the webpage"
 
def parse_html(html_content):
    soup = BeautifulSoup(html_content, 'html.parser')
    return soup.find_all('p')  # 假设我们要提取所有的段落
 
def main():
    url = 'https://www.example.com'  # 替换为你想爬取的网站
    html_content = fetch_website_content(url)
    paragraphs = parse_html(html_content)
    for p in paragraphs:
        print(p.text)
 
if __name__ == "__main__":
    main()

这个爬虫的功能是获取指定网页的内容,并解析提取出所有的段落标签(<p>)内的文本。你可以根据需要修改parse_html函数,以提取其他你感兴趣的HTML标签或数据。

注意:实际的网络爬虫可能需要处理更复杂的情况,例如处理Cookies、Session、反爬虫机制、分页、动态内容加载等。这个例子是一个入门级别的爬虫,主要用于演示基本的爬虫原理。