2024-08-10



import scrapy
from scrapy_redis.spiders import RedisSpider
 
class MySpider(RedisSpider):
    name = 'myspider'
    redis_key = 'myspider:start_urls'
 
    def parse(self, response):
        # 解析响应内容,提取items或者进一步跟进链接
        pass
 
    def start_requests(self):
        # 使用 scrapy-redis 提供的方法,从 redis 中读取起始 URL
        for url in self.start_urls:
            yield scrapy.Request(url=url, callback=self.parse)

这个简单的示例展示了如何使用scrapy_redis库创建一个名为MySpider的RedisSpider。RedisSpiderscrapy_redis提供的一个Spider子类,它从Redis的列表中读取起始URLs。parse方法是一个回调函数,用于处理每个响应(response),提取数据或进一步的链接。start_requests方法则是从self.start_urls读取起始URLs,并使用Scrapy生成请求。

2024-08-10



import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from pyecharts import Bar, Line, Pie, Map, Grid
 
# 读取数据
df = pd.read_csv('data.csv')
 
# 设置图表样式
plt.style.use('fivethirtyeight')
 
# 基于Deaths的条形图可视化
deaths_bar = Bar('COVID-19 Deaths by Country')
deaths_bar.add('Deaths', df['Country'].tolist(), df['Deaths'].tolist(), is_stack=True, category_gap='30%')
deaths_bar.render('deaths_bar.html')
 
# 基于ConfirmedCases的地图可视化
confirmed_map = Map()
confirmed_map.add('Confirmed Cases', [i[0] for i in df[['Country', 'ConfirmedCases']].values], 'china')
confirmed_map.set_global_opts(visualmap_opts=dict(is_show=True, range_color=['lightskyblue', 'yellow', 'orangered']))
confirmed_map.render('confirmed_map.html')
 
# 基于每日新增确诊的散点图可视化
daily_new_cases_scatter = Bar('Daily New Cases Scatter')
daily_new_cases_scatter.add('', df['Date'].tolist(), df['NewCases'].tolist(), is_random=True)
daily_new_cases_scatter.render('daily_new_cases_scatter.html')
 
# 基于每日新增死亡的散点图可视化
daily_new_deaths_scatter = Bar('Daily New Deaths Scatter')
daily_new_deaths_scatter.add('', df['Date'].tolist(), df['NewDeaths'].tolist(), is_random=True)
daily_new_deaths_scatter.render('daily_new_deaths_scatter.html')
 
# 基于每日新增恢复的散点图可视化
daily_new_recovered_scatter = Bar('Daily New Recovered Scatter')
daily_new_recovered_scatter.add('', df['Date'].tolist(), df['NewRecovered'].tolist(), is_random=True)
daily_new_recovered_scatter.render('daily_new_recovered_scatter.html')

这段代码使用了pyecharts库来创建图表,并展示了如何使用不同的图表类型来可视化COVID-19数据。这些图表包括条形图、地图和散点图,并且每个图表都被保存为一个HTML文件,以便在Web浏览器中查看。这个例子教会了如何使用pyecharts进行数据可视化,并展示了如何将Python爬虫和数据分析的结果进行可视化呈现。

2024-08-10

在Delphi中,可以使用TIdHttp组件来实现GET和POST方法,这是Indy组件库中的一个网络请求组件。以下是使用TIdHttp实现GET和POST方法的示例代码:




uses
  IdHTTP, IdGlobal;
 
// GET方法示例
procedure TForm1.ButtonGetClick(Sender: TObject);
var
  HttpClient: TIdHTTP;
  Response: String;
begin
  HttpClient := TIdHTTP.Create(nil);
  try
    Response := HttpClient.Get('http://example.com');
    ShowMessage(Response);
  finally
    HttpClient.Free;
  end;
end;
 
// POST方法示例
procedure TForm1.ButtonPostClick(Sender: TObject);
var
  HttpClient: TIdHTTP;
  Params: TStringList;
  Response: String;
begin
  HttpClient := TIdHTTP.Create(nil);
  Params := TStringList.Create;
  try
    Params.Add('key1=value1');
    Params.Add('key2=value2');
    Response := HttpClient.Post('http://example.com', Params);
    ShowMessage(Response);
  finally
    Params.Free;
    HttpClient.Free;
  end;
end;

在这个示例中,ButtonGetClick是一个事件处理程序,当点击按钮时会触发该事件,并执行GET请求。ButtonPostClick是一个事件处理程序,当点击按钮时会触发该事件,并执行POST请求。

请注意,在实际应用中,可能需要设置更多的属性,如代理、超时、请求头等,以满足特定的需求。此外,对于实际的应用场景,可能还需要处理异常和错误。

2024-08-10



from selenium import webdriver
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import time
 
# 初始化webdriver
driver = webdriver.Chrome()
 
# 打开智谱清言官网
driver.get('http://www.zhituce.com/')
 
# 等待页面加载textarea元素
textarea = WebDriverWait(driver, 10).until(
    EC.presence_of_element_located((By.ID, 'content'))
)
 
# 输入内容到textarea
textarea.send_keys('这里是测试内容')
 
# 删除textarea中的内容
textarea.clear()
 
# 输入修改后的内容
textarea.send_keys('这里是修改后的内容')
 
# 提交表单
submit_button = driver.find_element(By.ID, 'sub-btn')
submit_button.click()
 
# 等待页面处理完毕
time.sleep(2)
 
# 关闭浏览器
driver.quit()

这段代码使用了Selenium WebDriver来操作Chrome浏览器。首先,它打开智谱清言的官网,然后等待页面上的textarea元素加载完成,接着在textarea中输入内容,删除原有内容,再次输入修改后的内容,并最后点击提交按钮。最后关闭浏览器。这个过程模拟了一个用户的正常操作流程,对于学习爬虫技巧有很好的教育价值。

2024-08-10



library(htmltab)
 
# 定义一个函数来获取指定城市的天气信息
get_weather_info <- function(city) {
  # 构造目标网页的URL
  url <- sprintf("https://www.aqistudy.cn/historydata/daydata.php?city=%s", city)
  
  # 使用htmltab从网页中提取表格数据
  tryCatch({
    weather_table <- htmltab(url, trim = TRUE)
    
    # 处理表格数据,根据需要进行更多的数据清洗和转换
    if (nrow(weather_table) > 0) {
      # 将日期字符串转换为日期对象
      weather_table$日期 <- as.Date(weather_table$日期, format = "%Y-%m-%d")
      # 返回处理后的数据
      return(weather_table)
    } else {
      message("没有找到数据")
    }
  }, error = function(e) {
    message("网页解析错误: ", conditionMessage(e))
  })
}
 
# 示例:获取"北京"的天气信息
beijing_weather <- get_weather_info("北京")
print(beijing_weather)

这段代码定义了一个函数get_weather_info,它接受一个城市名称作为参数,构造相应的URL,使用htmltab函数从网页中提取表格数据,并对提取的数据进行简单的处理(例如日期格式转换)。然后,它尝试提取数据,并在出现错误时捕获异常,打印相关的错误信息。最后,它提供了一个使用这个函数获取特定城市天气信息的示例。

2024-08-10



import requests
from bs4 import BeautifulSoup
 
def get_html(url):
    """发送HTTP请求,获取网页内容"""
    try:
        response = requests.get(url)
        if response.status_code == 200:
            return response.text
        else:
            return "页面请求失败"
    except requests.RequestException:
        return "请求出错"
 
def parse_html(html):
    """解析网页,提取需要的信息"""
    soup = BeautifulSoup(html, 'html.parser')
    # 假设我们要提取所有的段落文本
    paragraphs = soup.find_all('p')
    for p in paragraphs:
        print(p.get_text())
 
def main():
    url = "https://example.com"  # 替换为你要爬取的网站
    html = get_html(url)
    parse_html(html)
 
if __name__ == "__main__":
    main()

这段代码展示了如何使用requests库发送HTTP请求,以及如何使用BeautifulSoup库解析HTML并提取所需信息。代码中的get_html函数负责发送请求,parse_html函数负责解析HTML,并打印段落文本。main函数则是程序的入口点,负责组织整个流程。在实际应用中,你需要根据目标网站的结构来调整解析代码,以提取你需要的数据。

2024-08-10



import requests
 
# 设置代理服务器
proxies = {
    'http': 'http://10.10.1.10:3128',
    'https': 'http://10.10.1.10:2080',
}
 
# 通过代理发送请求
response = requests.get('http://example.org', proxies=proxies)
 
# 打印响应内容
print(response.text)

这段代码展示了如何在使用requests模块发送HTTP请求时,通过proxies参数设置代理服务器,并发送一个GET请求到http://example.org。代理服务器的地址和端口分别对应HTTP和HTTPS协议。代码中还包含了如何打印响应内容的简单示例。

2024-08-10



import requests
 
# 目标网页URL
url = 'https://example.com/some_text'
 
# 发送HTTP GET请求
response = requests.get(url)
 
# 检查请求是否成功
if response.status_code == 200:
    # 解析响应内容,这里假设网页内容是纯文本
    text = response.text
    
    # 打印或处理文本内容
    print(text)
    
    # 保存到文件(如果需要)
    with open('downloaded_text.txt', 'w', encoding='utf-8') as file:
        file.write(text)
else:
    print(f"请求失败,状态码: {response.status_code}")

这段代码使用了requests库来发送一个HTTP GET请求到指定的URL,获取网页内容,并打印出来。如果你需要将内容保存到文件,可以取消注释保存到文件的部分代码。这是一个简单的Python爬虫示例,适合作为学习如何开始编写爬虫的起点。

2024-08-10



import requests
from bs4 import BeautifulSoup
import re
import pandas as pd
 
# 示例函数:从指定的新闻网站爬取新闻标题和链接
def crawl_news(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.text, 'html.parser')
    news_items = soup.find_all('div', class_='news-item')
    news_data = []
    for item in news_items:
        title = item.find('a').text
        link = item.find('a')['href']
        news_data.append({'title': title, 'link': link})
    return news_data
 
# 示例函数:使用正则表达式提取新闻内容中的关键词
def extract_keywords(content):
    keywords = re.findall(r'[a-zA-Z]+', content)
    return keywords
 
# 示例函数:将新闻数据转化为DataFrame格式
def prepare_dataframe(news_data):
    df = pd.DataFrame(news_data)
    return df
 
# 示例函数:使用K-means算法对新闻进行聚类
from sklearn.cluster import KMeans
 
def cluster_news(data, k=5):
    kmeans = KMeans(n_clusters=k)
    kmeans.fit(data)
    return kmeans.labels_
 
# 示例函数:根据用户的兴趣喜好,推荐相关新闻
def recommend_news(user_interests, news_data):
    recommended_news = [news for news in news_data if any(interest in news.keywords for interest in user_interests)]
    return recommended_news
 
# 示例函数:将新闻推荐给用户
def present_recommendation(recommended_news):
    for news in recommended_news:
        print(f"新闻标题: {news.title}")
        print(f"新闻链接: {news.link}\n")
 
# 假设的用户兴趣喜好
user_interests = ['科技', '健康']
 
# 假设的新闻网站URL
news_url = 'https://example.com/news'
 
# 爬取新闻
news_items = crawl_news(news_url)
 
# 为新闻数据准备DataFrame
df = prepare_dataframe(news_items)
 
# 为新闻数据提取关键词
df['keywords'] = df['title'].apply(extract_keywords)
 
# 使用K-means算法对新闻进行聚类
cluster_labels = cluster_news(df[['title', 'link']])
df['cluster'] = cluster_labels
 
# 根据用户的兴趣喜好,推荐相关新闻
recommended_news = recommend_news(user_interests, df)
 
# 将新闻推荐给用户
present_recommendation(recommended_news)

这个代码示例展示了如何使用Python爬取新闻网站的新闻标题和链接,如何提取关键词,如何使用K-means算法对新闻进行聚类,以及如何根据用户的兴趣喜好推荐相关新闻。这个过程是一个简化的示例,实际应用中需要更复杂的数据预处理和算法优化。

2024-08-10



import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
 
# 示例用户和新闻数据
users = {
    'Alice': ['news_1', 'news_3'],
    'Bob': ['news_1', 'news_4'],
    'Eve': ['news_2', 'news_3'],
    # ... 更多用户数据
}
news_database = {
    'news_1': 'Bitcoin price soars to new heights.',
    'news_2': 'Elon Musk talks about SpaceX.',
    'news_3': 'Tesla sales surge, stock price soars.',
    'news_4': 'Amazon goes public.',
    # ... 更多新闻数据
}
 
# 创建新闻-用户协同过滤推荐系统
def news_recommender(user):
    # 获取用户喜欢的新闻列表
    user_news_list = users[user]
    
    # 创建新闻-用户矩阵
    M = np.zeros((len(news_database), len(users)))
    for i, news_id in enumerate(news_database):
        for j, user_id in enumerate(users):
            if news_id in users[user_id]:
                M[i, j] = 1
    
    # 计算用户相似度矩阵
    sim_matrix = 1 - cosine_similarity(M)
    
    # 为当前用户生成新闻推荐
    recommendations = []
    for i, sim in enumerate(sim_matrix[i]):
        if sim > 0 and i not in user_news_list:
            recommendations.append((sim, list(news_database.keys())[i]))
    
    # 根据相似度从高到低排序,并返回推荐新闻
    return sorted(recommendations, reverse=True)
 
# 示例:为用户'Alice'生成新闻推荐
print(news_recommender('Alice'))

这段代码首先定义了一些示例用户和新闻数据,然后创建了一个新闻-用户协同过滤推荐系统的函数news_recommender。该函数首先构建了一个新闻-用户矩阵M,然后计算用户相似度矩阵sim_matrix,接着基于相似度为指定用户生成新闻推荐,并返回排序后的推荐列表。最后,我们为用户'Alice'生成了新闻推荐并打印输出。