【无人机编队】基于麻雀算法实现分布式无人机群自适应航迹规划和碰撞检测附matlab代码
麻雀算法是一种进化算法,可以被用来进行分布式无人机编队航迹规划和碰撞检测。以下是一个简化的例子,展示了如何使用麻雀算法进行无人机编队的航迹规划:
function [sol, fitness] = mA_SODA(params)
% 参数初始化
n = params.n; % 无人机数量
% ... 其他参数初始化
% 初始化麻雀群
nAnt = 30; % 麻雀个体数量
maxIter = 500; % 最大迭代次数
rho = 0.2; % 麻雀参数
Q = 1.0; % 麻雀参数
p = 0.7; % 麻雀参数
damp = 0.9; % 缓冲因子
iter = 0; % 迭代计数器
nIter = 0; % 无人机航迹改善的迭代次数
sol = zeros(n, 2); % 存储最优解
vel = zeros(n, 2); % 存储速度
pBest = zeros(n, 2); % 存储每个麻雀的最优解
gBest = zeros(n, 2); % 存储全局最优解
fitness = zeros(nAnt, 1); % 存储每个麻雀的适应度
% 初始化位置和速度
for i = 1:nAnt
sol(i, :) = rand(1, 2) * (params.ub - params.lb) + params.lb;
vel(i, :) = rand(1, 2) * 2 * (params.ub - params.lb);
fitness(i) = calculateFitness(sol(i, :), params); % 适应度评估
if fitness(i) < fitness(1)
pBest(i, :) = sol(i, :);
gBest(i, :) = sol(i, :);
else
pBest(i, :) = sol(1, :);
gBest(i, :) = sol(1, :);
end
end
% 麻雀搜索迭代
while iter < maxIter
for i = 1:nAnt
% 更新速度和位置
vel(i, :) = vel(i, :) * damp + rho * rand(1, 2) * (pBest(i, :) - sol(i, :)) + Q * rand(1, 2) * (gBest(1, :) - sol(i, :));
sol(i, :) = sol(i, :) + vel(i, :);
% 边界处理
sol(i, sol(i, :) > params.ub) = params.ub;
sol(i, sol(i, :) < params.lb) = params.lb;
% 适应度评估
newFitness = calculateFitness(sol(i, :), params);
fitness(i) = newFitness;
% 更新个体最优和全局最优解
if newFitness < fitness(1)
pBest(i, :) = sol(i, :);
if newFitness < fitness(1)
gBest(i, :) = sol(i, :);
end
else
pBest(i, :) = pBest(1, :);
end
end
% 更新全局最优解
[~, minFitIdx] = min(fitness);
if fitness(minFitIdx) < fitness(1)
gBest(1, :) = pBest(minFitIdx, :);
fitness(1) = fitness(minFitIdx);
nIter = iter;
end
iter = iter + 1;
end
% 输出结果
sol = gBest(1, :);
fitness = fitness(1);
评论已关闭