DALLE2图像生成新突破:预训练CLIP与扩散模型强强联合‌

DALLE2图像生成新突破:预训练CLIP与扩散模型强强联合

本文将带你深入了解 DALL·E 2 这一革命性图像生成模型如何借助预训练的 CLIP(Contrastive Language–Image Pretraining)与扩散模型(Diffusion Model)相结合,实现在自然语言提示下生成高分辨率、细节丰富的图像。文中涵盖模型原理、代码示例、关键图解和训练流程,全方位解析背后的技术细节,帮助你更轻松上手理解与实践。

目录

  1. 引言
  2. DALL·E 2 技术背景
  3. 预训练 CLIP:文本与图像的语义桥梁

    1. CLIP 的训练目标与架构
    2. CLIP 在 DALL·E 2 中的作用
  4. 扩散模型简介与数学原理

    1. 扩散模型的正向与反向过程
    2. DDPM(Denoising Diffusion Probabilistic Models)关键公式
    3. 扩散模型采样流程示意
  5. DALL·E 2 整体架构与工作流程

    1. 文本编码:CLIP 文本嵌入
    2. 高分辨率图像扩散:Mask Diffusion 机制
    3. 基于 CLIP 分数的指导(CLIP Guidance)
    4. 一阶段到二阶段的生成:低分辨率到高分辨率
  6. 关键代码示例:模拟 DALL·E 2 的核心实现

    1. 依赖与环境
    2. 加载预训练 CLIP 模型
    3. 定义简化版 DDPM 噪声预测网络
    4. 实现 CLIP 指导的扩散采样
    5. 完整示例:由 Prompt 生成 64×64 低分辨率图
    6. 二级放大:由 64×64 提升至 256×256
  7. 图解:DALL·E 2 模型核心模块

    1. CLIP 文本-图像对齐示意图
    2. 扩散模型正/反向流程图
    3. CLIP Guidance 机制示意图
  8. 训练与推理流程详解

    1. 预训练阶段:CLIP 与扩散网络
    2. 微调阶段:联合优化
    3. 推理阶段:文本→图像生成
  9. 实践建议与技巧
  10. 总结
  11. 参考文献与延伸阅读

引言

自从 OpenAI 在 2021 年发布 DALL·E 1 后,基于“文本生成图像”(Text-to-Image)的研究快速升温。DALL·E 1 能生成 256×256 的图像,但在分辨率和细节丰富度方面仍有限。2022 年问世的 DALL·E 2 将生成分辨率提升到 1024×1024,并实现了更逼真的光影与几何一致性。其核心秘诀在于:

  1. 预训练 CLIP 作为文本与图像的通用嵌入,确保“文本提示”与“图像特征”在同一语义空间对齐;
  2. 借助扩散模型 作为生成引擎,以逐步去噪方式从随机噪声中“生长”出图像;
  3. CLIP Guidance 技术 使得扩散采样时可动态调整生成方向,以更忠实地符合文本提示。

本文将逐层拆解 DALL·E 2 的工作原理、核心代码实现与关键图示,让你在理解数学背景的同时,掌握动手实践思路。


DALL·E 2 技术背景

  1. DALL·E 1 简要回顾

    • 基于 GPT-3 架构,将 Transformer 用于图像生成;
    • 图像先被离散 VAE(dVAE)编码成一系列“图像令牌(image tokens)”,再由自回归 Transformer 预测下一令牌。
    • 优点在于能够生成多种异想天开的视觉内容,但生成分辨率受限于 dVAE Token 长度(通常 256×256)。
  2. DALL·E 2 的重大突破

    • 从“自回归图像令牌生成”转向“扩散模型 + CLIP Guidance”架构;
    • 扩散模型天然支持高分辨率图像生成,且更易训练;
    • CLIP 提供“跨模态”对齐,使文本与图像在同一向量空间中具有语义可比性;
    • 结合 CLIP 分数的“Guidance”可在每次去噪采样时,让图像逐步更符合文本提示。

预训练 CLIP:文本与图像的语义桥梁

CLIP 的训练目标与架构

CLIP(Contrastive Language–Image Pretraining) 由 OpenAI 在 2021 年发布,主要目标是学习一个通用的文本 Encoder 与图像 Encoder,使得文本描述与对应图像在同一向量空间内“靠近”,而与其他图像/文本“远离”。

  • 数据集:将数亿对图文(alt-text)数据作为监督信号;
  • 模型架构

    • 图像 Encoder:通常是 ResNet、ViT 等架构,输出归一化后向量 $\mathbf{v}\_\text{img} \in \mathbb{R}^d$;
    • 文本 Encoder:Transformer 架构,将 Token 化的文本映射为 $\mathbf{v}\_\text{text} \in \mathbb{R}^d$;
  • 对比学习目标:对于一批 $N$ 对 (image, text),计算所有图像向量与文本向量的点积相似度矩阵 $S \in \mathbb{R}^{N\times N}$,然后对角线元素应尽量大(正样本对),非对角元素应尽量小(负样本对)。

    $$ \mathcal{L} = - \frac{1}{2N} \sum_{i=1}^{N} \Bigl[\log \frac{e^{s_{ii}/\tau}}{\sum_{j=1}^{N} e^{s_{ij}/\tau}} + \log \frac{e^{s_{ii}/\tau}}{\sum_{j=1}^{N} e^{s_{ji}/\tau}} \Bigr], $$

    其中 $s\_{ij} = \mathbf{v}\text{img}^i \cdot \mathbf{v}\text{text}^j$,$\tau$ 为温度系数。

训练完成后,CLIP 能在零样本(Zero-Shot)场景下对图像进行分类、检索,也可为下游任务提供文本与图像对齐的嵌入。


CLIP 在 DALL·E 2 中的作用

在 DALL·E 2 中,CLIP 扮演了两个关键角色:

  1. 文本编码

    • 将用户输入的自然语言 Prompt(如 “a photorealistic painting of a sunset over mountains”)映射为文本嵌入 $\mathbf{c} \in \mathbb{R}^d$.
    • 该 $\mathbf{c}$ 成为后续扩散模型采样时的“条件向量(conditioning vector)”或“目标向量(target vector)”。
  2. 采样指导(CLIP Guidance)

    • 在扩散去噪过程中,每一步我们可以利用当前生成图像的 CLIP 图像嵌入 $\mathbf{v}\text{img}(x\_t)$ 和文本嵌入 $\mathbf{c}$ 计算相似度分数 $s(\mathbf{v}\text{img}(x\_t), \mathbf{c})$;
    • 通过对该分数的梯度 $\nabla\_{x\_t} s(\cdot)$ 进行放大并加到扩散网络预测上,可使得生成结果在每一步更朝着“与文本语义更对齐”的方向演化;
    • 这种技术类似于 “Classifier Guidance” 中使用分类模型对 Score 的梯度进行引导,但这里用 CLIP 替代。

示意图:CLIP 在扩散采样中的指导

 Step t:
 1) 原始扩散网络预测噪声 e_θ(x_t, t, c)
 2) 将 x_t 送入 CLIP 图像 Encoder,得到 v_img(x_t)
 3) 计算相似度 score = v_img(x_t) · c
 4) 计算梯度 g = ∇_{x_t} score
 5) 修改噪声预测: e'_θ = e_θ + w * g  (w 为权重超参)
 6) 根据 e'_θ 反向还原 x_{t-1}

扩散模型简介与数学原理

扩散模型的正向与反向过程

扩散模型(Diffusion Models)是一类概率生成模型,其核心思想是:

  1. 正向扩散(Forward Diffusion):将真实图像 $x\_0$ 逐步添加高斯噪声,直至变为近似纯噪声 $x\_T$;

    $$ q(x_t \mid x_{t-1}) = \mathcal{N}\bigl(x_t; \sqrt{1 - \beta_t}\, x_{t-1},\, \beta_t \mathbf{I}\bigr), \quad t = 1,2,\dots,T, $$

    其中 ${\beta\_t}$ 是预先设定的小型正数序列。可以证明 $x\_t$ 也服从正态分布:

    $$ q(x_t \mid x_0) = \mathcal{N}\Bigl(x_t; \sqrt{\bar\alpha_t}\, x_0,\,(1 - \bar\alpha_t)\mathbf{I}\Bigr), $$

    其中 $\alpha\_t = 1 - \beta\_t,, \bar\alpha\_t = \prod\_{s=1}^t \alpha\_s$.

  2. 反向扩散(Reverse Diffusion):从噪声 $x\_T \sim \mathcal{N}(0,\mathbf{I})$ 开始,学习一个模型 $p\_\theta(x\_{t-1} \mid x\_t)$,逆向地一步步“去噪”,最终恢复为 $x\_0$。

具体而言,反向分布近似被简化为:

$$ p_\theta(x_{t-1} \mid x_t) = \mathcal{N}\bigl(x_{t-1}; \mu_\theta(x_t, t),\, \Sigma_\theta(x_t, t)\bigr). $$

通过变分下界(Variational Lower Bound)的优化,DDPM(Denoising Diffusion Probabilistic Models)提出只学习一个噪声预测网络 $\epsilon\_\theta(x\_t, t)$,并固定协方差为 $\Sigma\_t = \beta\_t \mathbf{I}$,从而简化训练目标:

$$ L_{\text{simple}} = \mathbb{E}_{x_0, \epsilon \sim \mathcal{N}(0,I), t} \Bigl\| \epsilon - \epsilon_\theta\bigl(\sqrt{\bar\alpha_t}\,x_0 + \sqrt{1 - \bar\alpha_t}\,\epsilon,\,t\bigr)\Bigr\|_2^2. $$

DDPM 关键公式

  1. 噪声预测

    • 给定真实图像 $x\_0$,随机采样时间步 $t$,以及 $\epsilon \sim \mathcal{N}(0,\mathbf{I})$,我们构造带噪声样本:

      $$ x_t = \sqrt{\bar\alpha_t}\, x_0 + \sqrt{1 - \bar\alpha_t}\,\epsilon. $$

    • 训练网络 $\epsilon\_\theta(x\_t, t)$ 去预测这一噪声 $\epsilon$.
  2. 去噪采样

    • 当训练完成后,从高斯噪声 $x\_T \sim \mathcal{N}(0,\mathbf{I})$ 开始,递推生成 $x\_{t-1}$:

      $$ x_{t-1} = \frac{1}{\sqrt{\alpha_t}}\Bigl(x_t - \frac{\beta_t}{\sqrt{1 - \bar\alpha_t}}\,\epsilon_\theta(x_t,t)\Bigr) + \sigma_t z,\quad z \sim \mathcal{N}(0,\mathbf{I}), $$

      其中 $\sigma\_t^2 = \beta\_t$.

  3. 条件扩散

    • 若要在扩散过程中加入“条件”(如文本提示),可把 $\epsilon\_\theta(x\_t, t, c)$ 改为“同时输入文本编码 $c$”的网络;
    • 也可结合 CLIP Guidance 技术,用梯度对噪声预测结果做修正。

扩散模型采样流程示意

       x_0 (真实图像)
          │ 添加噪声 β₁, …, β_T
          ▼
   x_T ≈ N(0, I)  ←—— 正向扩散 q(x_t | x_{t-1})
  
  训练:学习 ε_θ 参数,使 ε_θ(x_t, t) ≈ 噪声 ε  
  
  推理/采样:
    1) 初始化 x_T ∼ N(0,I)
    2) for t = T, T-1, …, 1:
         ε_pred = ε_θ(x_t, t)           # 预测噪声
         x_{t-1} = (x_t − ((β_t)/(√(1−ā_t))) ε_pred) / √(α_t) + σ_t z   # 反向采样
    3) 返回 x_0 近似生成图像

DALL·E 2 整体架构与工作流程

文本编码 CLIP 文本嵌入

  1. Prompt 预处理

    • 对用户输入的自然语言提示(Prompt)做基础处理:去除多余空格、标点、统一大小写;
    • 通过 CLIP 文本 Encoder(通常是一个 Transformer)将 Token 化的 Prompt 转化为文本向量 $\mathbf{c} \in \mathbb{R}^d$.
  2. CLIP 文本特征

    • 文本嵌入 $\mathbf{c}$ 通常经归一化(L2 Norm),与图像嵌入同分布;
    • 该向量既包含了 Promp 的整体语义,也可与后续生成图像相对齐。

高分辨率图像扩散:Mask Diffusion 机制

为了在高分辨率(如 1024×1024)下仍保持计算可行性,DALL·E 2 采用了多阶段分辨率递进方案

  1. 第一阶段:生成低分辨率草图

    • 扩散模型在 64×64 或 256×256 分辨率下进行采样,生成“基础结构”(低分辨率草图);
    • 网络架构为 U-Net 变体:对输入 $x\_t$(带噪低分辨率图)与文本嵌入 $\mathbf{c}$ 进行多尺度特征提取与去噪预测。
  2. 第二阶段:高分辨率放大(Super-Resolution)

    • 将第一阶段生成的低分辨率图像 $x\_0^{LR}$ 作为条件,与噪声叠加后在更高分辨率(如 256×256 或 1024×1024)上进行扩散采样;
    • 这一阶段称为 Mask Diffusion,因为网络只需“补全”低分辨率图像未覆盖的细节部分:

      • 定义掩码 $M$ 将低分辨率图 $x\_0^{LR}$ 插值至高分辨率 $x\_0^{HR}$ 对应区域,并添加随机噪声;
      • 扩散网络的输入为 $(x\_t^{HR}, M, \mathbf{c})$,目标是生成完整的高分辨率图像 $x\_0^{HR}$.
  3. 分辨率递进示意

    Prompt → CLIP 文本嵌入 c
           ↓
      64×64 扩散采样 → 生成低分辨率图 x_0^{64}
           ↓ 插值放大 & 噪声添加
    256×256 Mask Diffusion → 生成 256×256 图像 x_0^{256}
           ↓ 插值放大 & 噪声添加
    1024×1024 Mask Diffusion → 生成最终 1024×1024 图像 x_0^{1024}

基于 CLIP 分数的指导(CLIP Guidance)

为了让扩散生成更加忠实于 Prompt 语义,DALL·E 2 在采样过程中引入 CLIP Guidance

  1. 原理

    • 当扩散模型预测噪声 $\epsilon\_\theta(x\_t,t,\mathbf{c})$ 后,可以将当前去噪结果 $\hat{x}{t-1}$ 传入 CLIP 图像 Encoder,得到图像嵌入 $\mathbf{v}\text{img}$.
    • 计算相似度 $\text{score} = \mathbf{v}\text{img}\cdot \mathbf{c}$. 若该分数较高,说明 $\hat{x}{t-1}$ 更接近文本语义;否则,对噪声预测做调整。
    • 具体做法是:

      $$ \epsilon'_\theta = \epsilon_\theta + \lambda \nabla_{x_t} \bigl(\mathbf{v}_\text{img}(x_t)\cdot \mathbf{c}\bigr), $$

      其中 $\lambda$ 是超参数,控制 CLIP 指导的强度。

  2. 实现步骤

    • 对每一步的“去噪预测”进行梯度流回:

      • 将中间去噪结果 $\hat{x}\_{t-1}$ 以适当插值大小(例如 224×224)输入 CLIP 图像 Encoder;
      • 计算 $\text{score}$,并对输入图像 $\hat{x}{t-1}$ 求梯度 $\nabla{\hat{x}\_{t-1}} \text{score}$;
      • 将该梯度再插值回当前采样分辨率,并加权运用于 $\epsilon\_\theta$;
    • 这样可以让每一步去噪都更加朝向与文本更匹配的视觉方向发展。

一阶段到二阶段的生成:低分辨率到高分辨率

综合上述思路,DALL·E 2 的生成分为两大阶段:

  1. 低分辨率生成

    • 输入 Prompt → 得到 $\mathbf{c}$ → 在 64×64(或 256×256)分辨率上做有条件的扩散采样,得到初步草图 $x\_0^{LR}$.
    • 在此阶段也可使用 CLIP Guidance,让低分辨率图像更贴合 Prompt。
  2. 高分辨率放大与细节生成

    • 将 $x\_0^{LR}$ 最近邻或双线性插值放大到目标分辨率(如 256×256);
    • 对该放大图 $U(x\_0^{LR})$ 添加随机噪声 $x\_t^{HR}$;
    • 在更高分辨率上做扩散采样,利用 Mask Diffusion 模型填补细节,生成高分辨率最终图 $x\_0^{HR}$.
    • 同样可在此阶段应用 CLIP Guidance,增强细节与 Prompt 的一致性。

通过分阶段、分辨率递进的设计,DALL·E 2 能以相对有限的计算开销生成高质量、高分辨率的图像。


关键代码示例:模拟 DALL·E 2 的核心实现

以下示例以 PyTorch 为基础,简要展示如何:

  1. 加载预训练 CLIP;
  2. 定义一个简化版的 DDPM 去噪网络;
  3. 在扩散采样中融入 CLIP Guidance;
  4. 演示从 Prompt 到 64×64 低分辨率图像的完整流程。
注意:以下代码为教学示例,实际 DALL·E 2 中使用的网络架构与训练细节要复杂得多。

依赖与环境

# 安装必要依赖
pip install torch torchvision ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git  # 安装 CLIP 官方库
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
from PIL import Image
import clip  # CLIP 官方库
import math
import numpy as np

加载预训练 CLIP 模型

# 选择使用 CPU 或 GPU
device = "cuda" if torch.cuda.is_available() else "cpu"

# 加载 CLIP 模型:ViT-B/32 或 RN50 等
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)

# 冻结 CLIP 参数,不参与微调
for param in clip_model.parameters():
    param.requires_grad = False

# 定义一个辅助函数:输入 PIL 图像张量,输出归一化后的图像嵌入
def get_clip_image_embedding(img_tensor):
    """
    img_tensor: (3, H, W), 已归一化到 [0,1]
    先缩放为 CLIP 接受的 224×224,做标准化,然后编码
    """
    # CLIP 预处理(Resize、CenterCrop、Normalize)
    img_input = clip_preprocess(img_tensor.cpu()).unsqueeze(0).to(device)  # (1,3,224,224)
    with torch.no_grad():
        img_features = clip_model.encode_image(img_input)  # (1, d)
        img_features = img_features / img_features.norm(dim=-1, keepdim=True)
    return img_features  # (1, d)

# 定义辅助函数:文本 prompt → 文本嵌入
def get_clip_text_embedding(prompt_text):
    """
    prompt_text: str
    """
    text_tokens = clip.tokenize([prompt_text]).to(device)  # (1, seq_len)
    with torch.no_grad():
        text_features = clip_model.encode_text(text_tokens)  # (1, d)
        text_features = text_features / text_features.norm(dim=-1, keepdim=True)
    return text_features  # (1, d)
  • get_clip_image_embedding 支持输入任何 PIL Image → 得到归一化后图像嵌入;
  • get_clip_text_embedding 支持输入 Prompt → 得到文本嵌入。

定义简化版 DDPM 噪声预测网络

下面我们构建一个轻量级的 U-Net 样例,用于在 64×64 分辨率下预测噪声 $\epsilon\_\theta$。

class SimpleUNet(nn.Module):
    def __init__(self, in_channels=3, base_channels=64):
        super(SimpleUNet, self).__init__()
        # 下采样阶段
        self.enc1 = nn.Sequential(
            nn.Conv2d(in_channels, base_channels, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.Conv2d(base_channels, base_channels, kernel_size=3, padding=1),
            nn.ReLU()
        )
        self.pool = nn.MaxPool2d(2)  # 64→32
        self.enc2 = nn.Sequential(
            nn.Conv2d(base_channels, base_channels*2, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.Conv2d(base_channels*2, base_channels*2, kernel_size=3, padding=1),
            nn.ReLU()
        )
        self.pool = nn.MaxPool2d(2)  # 32→16

        # 中间
        self.mid = nn.Sequential(
            nn.Conv2d(base_channels*2, base_channels*4, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.Conv2d(base_channels*4, base_channels*2, kernel_size=3, padding=1),
            nn.ReLU()
        )

        # 上采样阶段
        self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)  # 16→32
        self.dec2 = nn.Sequential(
            nn.Conv2d(base_channels*4, base_channels*2, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.Conv2d(base_channels*2, base_channels*2, kernel_size=3, padding=1),
            nn.ReLU()
        )
        self.up2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)  # 32→64
        self.dec1 = nn.Sequential(
            nn.Conv2d(base_channels*2 + base_channels, base_channels, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.Conv2d(base_channels, in_channels, kernel_size=3, padding=1),
        )

    def forward(self, x):
        # 下采样
        e1 = self.enc1(x)  # (B, 64, 64, 64)
        p1 = self.pool(e1)  # (B, 64, 32, 32)
        e2 = self.enc2(p1)  # (B, 128,32,32)
        p2 = self.pool(e2)  # (B,128,16,16)

        # 中间
        m = self.mid(p2)    # (B,128,16,16)

        # 上采样
        u1 = self.up(m)     # (B,128,32,32)
        cat2 = torch.cat([u1, e2], dim=1)  # (B,256,32,32)
        d2 = self.dec2(cat2)  # (B,128,32,32)

        u2 = self.up2(d2)   # (B,128,64,64)
        cat1 = torch.cat([u2, e1], dim=1)  # (B,192,64,64)
        out = self.dec1(cat1)  # (B,3,64,64)

        return out  # 预测噪声 ε_θ(x_t)
  • 注意:为了简化示例,此 U-Net 没有加入时间步嵌入与文本条件,实际上需要把 $t$ 与 CLIP 文本嵌入一并输入网络。
  • 在后续采样中,我们将把时间步 $t$ 与文本嵌入拼接到中间特征,以便网络做有条件预测。

实现 CLIP 指导的扩散采样

以下代码示例演示在扩散某一步时,如何结合 CLIP Guidance 对噪声预测进行修正。

def ddim_sample_with_clip_guidance(model, clip_model, clip_tokenizer, c_text,
                                   num_steps=50, img_size=64, guidance_scale=100.0, device="cpu"):
    """
    简化版采样流程,结合 CLIP Guidance
    model: 已训练好的 DDPM 噪声预测网络
    clip_model: 预训练的 CLIP 模型
    clip_tokenizer: CLIP Tokenizer
    c_text: CLIP 文本嵌入 (1, d)
    """
    # 1. 准备时间步序列与 β_t 序列(线性或余弦预定义)
    betas = torch.linspace(1e-4, 0.02, num_steps).to(device)  # 简化起见使用线性 β
    alphas = 1 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)  # ā_t

    # 2. 从标准正态噪声开始
    x_t = torch.randn(1, 3, img_size, img_size).to(device)

    for i in reversed(range(num_steps)):
        t = torch.full((1,), i, dtype=torch.long).to(device)  # 当前时间步 t
        alpha_t = alphas[i]
        alpha_cumprod_t = alphas_cumprod[i]
        beta_t = betas[i]

        # 3. 预测噪声 (网络需要输入 x_t, t, c_text;这里示例不带条件)
        # 扩散网络实际应接收时间步嵌入与文本条件,此处为简化
        epsilon_pred = model(x_t)  # (1,3,64,64)

        # 4. 生成当前时刻的图像估计 x0_pred
        x0_pred = (x_t - (1 - alpha_t).sqrt() * epsilon_pred) / (alpha_t.sqrt())

        # 5. CLIP Guidance:将 x0_pred 调整到 CLIP 嵌入空间
        #     a) 将 x0_pred 缩放到 [0,1] 并转换为 PIL RGB 图像
        img = ((x0_pred.clamp(-1,1) + 1) / 2).clamp(0,1)  # 归一化到 [0,1]
        pil_img = T.ToPILImage()(img.squeeze().cpu())
        #     b) 获取 CLIP 图像嵌入
        img_embed = get_clip_image_embedding(pil_img).to(device)  # (1, d)
        #     c) 计算相似度分数
        score = torch.cosine_similarity(img_embed, c_text, dim=-1)  # (1,)
        #     d) 反向传播得到梯度 w.r.t. x_t
        clip_model.zero_grad()
        score.backward()
        grad = x_t.grad.detach() if x_t.grad is not None else torch.zeros_like(x_t)
        #     e) 对网络预测噪声做修正
        epsilon_pred = epsilon_pred - guidance_scale * grad

        # 6. DDIM 公式或 DDPM 公式更新 x_{t-1}
        if i > 0:
            noise = torch.randn_like(x_t).to(device)
        else:
            noise = torch.zeros_like(x_t)

        coef1 = 1 / alpha_t.sqrt()
        coef2 = beta_t / torch.sqrt(1 - alpha_cumprod_t)
        x_t = coef1 * (x_t - coef2 * epsilon_pred) + beta_t.sqrt() * noise
        # 清空梯度,为下次循环做准备
        x_t = x_t.detach().requires_grad_(True)

    return x_t  # 最终生成的图像张量 (1,3,64,64)
  • 说明

    • 该代码将每一步去噪结果 $x\_0^{(t)}$ 输入 CLIP,计算得分并对噪声预测做梯度修正。
    • 实际 DALL·E 2 中使用更复杂的公式(如 DDIM)、更合理的时间步排布(如余弦时间表),以及更强大的 U-Net 结构。
    • guidance_scale 控制 CLIP 指导强度,一般设为几十到几百不等。

完整示例:由 Prompt 生成 64×64 低分辨率图

最后我们把上述步骤整合,演示如何从一句文本 Prompt 生成一张 64×64 的低分辨率图像。

if __name__ == "__main__":
    # 1) 输入 Prompt
    prompt = "A futuristic city skyline at sunset"
    # 2) 获取 CLIP 文本嵌入
    c_text = get_clip_text_embedding(prompt).to(device)  # (1, d)

    # 3) 实例化扩散网络
    model = SimpleUNet(in_channels=3, base_channels=64).to(device)
    # 假设已加载训练好的权重
    # model.load_state_dict(torch.load("simple_unet_ddpm64.pth"))

    # 4) 扩散采样,结合 CLIP Guidance
    generated_tensor = ddim_sample_with_clip_guidance(
        model=model,
        clip_model=clip_model,
        clip_tokenizer=None,
        c_text=c_text,
        num_steps=50,
        img_size=64,
        guidance_scale=50.0,
        device=device
    )

    # 5) 将最终张量保存为图像
    gen_img = ((generated_tensor.clamp(-1,1) + 1) / 2).clamp(0,1)  # (1,3,64,64)
    T.ToPILImage()(gen_img.squeeze().cpu()).save("dalle2_demo_64.png")
    print("已生成并保存低分辨率 64×64 图像:dalle2_demo_64.png")
  • 运行后,dalle2_demo_64.png 会是一张与 Prompt 语义相符的低分辨率草图;
  • 若需要更高分辨率,可将此图作为 Mask Diffusion 模型的输入,进行第二阶段放大与细节生成。

图解:DALL·E 2 模型核心模块

为了更直观地理解上述文字与代码,这里给出关键流程的图解说明。

CLIP 文本–图像对齐示意图

    ┌─────────────────────────┐
    │    文本 Encoder(Transformer)  │
    │  Prompt: “A cat sitting on a mat”  │
    │  → Token Embedding →  Transformer  │
    │  → Text Embedding c ∈ ℝ^d         │
    └─────────────────────────┘
                  │
                  ▼
      ┌──────────────────────────┐
      │   CLIP 语义空间 ℝ^d      │
      └──────────────────────────┘
                  ▲
                  │
    ┌─────────────────────────┐
    │ 图像 Encoder(ViT 或 ResNet) │
    │  Image: (224×224)→ Patch Emb → ViT │
    │  → Image Embedding v ∈ ℝ^d       │
    └─────────────────────────┘

    目标:使得 v ⋅ c 在同一语义对(image, text)上最大
  • 文本与图像都被映射到同一个 $d$ 维向量空间,正样本对内积最大;

扩散模型正反向流程图

正向扩散 (训练时):
    x₀  →(t=1: 添加噪声 β₁)→ x₁ →(t=2: 添加噪声 β₂)→ x₂ → … → x_T ≈ N(0, I)
网络学习目标:ε_θ(x_t, t) ≈ 噪声 ε

反向去噪 (采样时):
    x_T ∼ N(0, I)
     ↓ (t = T→T-1 …)
    x_{t-1} = (x_t − (β_t / √(1−ā_t)) ε_θ(x_t, t)) / √{α_t} + √{β_t} z
     ↓
    x_0 (生成图像)
  • 每一步网络预测噪声,并逐步恢复清晰图像;

CLIP Guidance 机制示意图

 每步采样 (在时刻 t):
   ① ε_pred = ε_θ(x_t, t, c)  # 扩散网络预测
   ② x̂₀ = (x_t − √(1−ā_t) ε_pred) / √(ā_t)
   ③ 将 x̂₀ ↓resize→224×224 → CLIP 图像嵌入 v_img
   ④ score = cos(v_img, c_text)              # 文本-图像相似度
   ⑤ 计算 ∇_{x_t} score                       # 反向梯度
   ⑥ ε′_pred = ε_pred − λ ∇_{x_t} score        # 修正噪声预测
   ⑦ 根据 ε′_pred 按 DDPM/DDIM 采样公式更新 x_{t-1}
  • 借助 CLIP 的梯度将生成方向导向更符合文本语义的图像;

训练与推理流程详解

预训练阶段:CLIP 与扩散网络

  1. CLIP 预训练

    • 基于大规模互联网图文对,采用对比学习训练图像 Encoder 与文本 Encoder;
    • 输出文本嵌入 $c$ 与图像嵌入 $v$,并归一化到单位球面。
  2. 扩散模型预训练

    • 在大规模无条件图像数据集(如 ImageNet、LAION-2B)上训练去噪网络 $\epsilon\_\theta(x\_t, t)$;
    • 若要做有条件扩散,可在网络中引入条件嵌入(如类别标签、低分辨率图像等);
    • 使用 DDPM 训练目标:$|\epsilon - \epsilon\_\theta(x\_t,t)|^2$.

微调阶段:联合优化

  1. 条件扩散网络训练

    • 在网络输入中同时加入 CLIP 文本嵌入 $\mathbf{c}$,训练网络学习 $\epsilon\_\theta(x\_t, t, c)$;
    • 损失函数依旧是去噪 MSE,但要求网络能同时考虑图像噪声和文本条件。
  2. CLIP Guidance 微调

    • 若要让 CLIP Guidance 更有效,可将 CLIP 嵌入与去噪网络的梯度一并微调,保证梯度信号更准确。
    • 也可以对扩散网络与 CLIP 模型做联合微调,使得生成图像和 CLIP 文本空间更一致。

推理阶段:文本→图像生成

  1. 输入 Prompt

    • 用户输入自然语言描述,经过 CLIP 文本 Encoder 得到 $\mathbf{c}$.
  2. 低分辨率扩散采样

    • 在 64×64(或 256×256)分辨率下,从纯噪声开始做有条件扩散采样;
    • 在每一步中应用 CLIP Guidance,让生成更贴合 Prompt。
  3. 高分辨率放大 & Mask Diffusion

    • 将 64×64 的结果插值放大到 256×256,添加噪声,进行 Mask Diffusion,生成细节;
    • 再次放大至 1024×1024,或依据需求分多级放大。
  4. 后处理

    • 对最终图像做色彩校正、对比度增强、锐化等后处理;
    • 将图像输出给用户,或进一步用于艺术创作、商业设计等场景。

实践建议与技巧

  1. Prompt 设计

    • 简洁明确:突出主要内容和风格,例如“a photorealistic portrait of a golden retriever puppy sitting in a meadow at sunrise”。
    • 可加入风格提示:如“in the style of oil painting”,“ultra-realistic”,“8K resolution”,“cinematic lighting”等。
    • 若生成效果不理想,可尝试分层提示:先只写主体描述,再补充风格与细节。
  2. 扩散超参数调优

    • 采样步数 (num\_steps):步数越多生成越精细,但速度越慢;常见 50 – 100 步;
    • Guidance Scale (λ):CLIP 指导强度,过高会导致过度优化文本相似度而失真,过低则无法充分指导;可从 20–100 之间尝试。
    • β (Noise Schedule):线性、余弦或自定义 schedule,不同 schedule 对去噪质量有显著影响。
  3. 分辨率递进做法

    • 在资源受限场景,直接从 64×64 → 256×256 → 1024×1024 需要大量显存,可采用更平滑的多级方案:

      • 64×64 → 128×128 → 256×256 → 512×512 → 1024×1024,每级都用专门的 Mask Diffusion 子网络。
    • 对于每一级 Mask Diffusion,都可使用相同的 CLIP Guidance 机制,使得各尺度生成都与 Prompt 保持一致。
  4. 使用已开源模型与工具

    • Hugging Face 生态中已有 CLIP、扩散模型(如 CompVis/stable-diffusion)可直接调用;
    • 可借助 diffusers 库快速搭建并微调扩散管道(Pipeline),无需从零开始实现所有细节。
    • 若只是想体验生成,可直接使用 OpenAI 提供的 DALL·E 2 API,关注 Prompt 设计与结果微调。

总结

  • DALL·E 2 通过将 预训练 CLIP扩散模型 有机结合,实现了从文本到高分辨率图像的无缝迁移;
  • CLIP 在语言与视觉之间构建了一座“高质量的语义桥梁”,使得扩散网络能够动态地被文本指导(CLIP Guidance),生成更加精准、生动的图像;
  • 多阶段分辨率递进和 Mask Diffusion 技术,则保证了在可控计算成本下得到接近 1024×1024 甚至更高分辨率的精细结果;
  • 通过本文介绍的数学原理、代码示例与图解示意,你已经了解了 DALL·E 2 的核心机制与动手要领。你可以基于此思路,利用开源扩散模型与 CLIP,构建自己的文本→图像管道,探索更多创意应用。

欢迎你继续在此基础上进行更深入的研究:优化噪声网络架构、改进 CLIP Guidance 方式、结合拓展的文本 Prompt,引发更多创新与突破。


参考文献与延伸阅读

  1. Rombach, Robin, et al. “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR 2022.
  2. Nichol, Alexander Quinn, et al. “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, ICML 2022.
  3. Ramesh, Aditya, et al. “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv:2204.06125 (DALL·E 2).
  4. Radford, Alec, et al. “Learning Transferable Visual Models From Natural Language Supervision”, ICML 2021 (CLIP 原理论文).
  5. Ho, Jonathan, et al. “Denoising Diffusion Probabilistic Models”, NeurIPS 2020 (DDPM 原理论文).
  6. Dhariwal, Prafulla, et al. “Diffusion Models Beat GANs on Image Synthesis”, NeurIPS 2021.
  7. OpenAI 官方博客:

    • “DALL·E 2: Outpainting and Inpainting”
    • “CLIP: Connecting Text and Images”

后记
本文旨在用最清晰的思路与示例,帮助读者理解并动手实践 DALL·E 2 核心技术。若你对此感兴趣,建议进一步阅读相关论文与开源实现,结合 GPU 资源进行微调与实验,开启更多创意图像生成之旅。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日