【03】LLaMA-Factory微调大模型——多模型部署




import os
from transformers import LlamaModel, LlamaConfig, LlamaTokenizer
 
# 加载模型和分词器
model_dir = "path/to/llama-factory-models"
model_name = "microsoft/llama-7b-hf"
tokenizer = LlamaTokenizer.from_pretrained(model_dir)
 
# 加载配置和模型
config = LlamaConfig.from_pretrained(model_dir)
model = LlamaModel.from_pretrained(model_dir, config=config)
 
# 设置CUDA是否可用
use_cuda = True
if use_cuda:
    model.cuda()
 
# 用户输入的问题
question = "What is the capital of France?"
 
# 将输入转换为模型需要的token ids
input_ids = tokenizer.encode(question, return_tensors='pt')
if use_cuda:
    input_ids = input_ids.cuda()
 
# 运行模型进行推理
outputs = model.generate(input_ids)
 
# 解码输出结果
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(answer)

这段代码展示了如何加载LLaMA模型并对用户输入的问题进行预测。首先,它定义了模型和分词器的路径,并加载它们。然后,它将用户的问题编码为模型需要的token ids,并在CUDA可用时将它们和模型送至GPU。最后,它使用模型生成器方法进行推理,解码并打印出输出结果。这个过程是部署大型语言模型进行应用的一个基本示例。

none
最后修改于:2024年09月06日 09:14

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日