Oracle Cloud Infrastructure (OCI) 与 LangChain 集成:探索 AI 服务和模型部署




from langchain.chat_models import ChatOpenAI
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import WeightsOnlyQAVectorStore
from langchain.llms import AGILLLLM
from langchain.chains import RetrievalQAModel
from langchain.prompts import StaticPromptTemplate
from langchain.vectorstores import WeightsOnlyQAVectorStore
from langchain.chains import ConversationChain
 
# 创建一个基于OpenAI的聊天模型
openai_chat = ChatOpenAI(temperature=0)
 
# 创建一个文本分割器,用于处理大文本
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=500)
 
# 创建一个向量存储,用于储存文本的向量表示
vectorstore = WeightsOnlyQAVectorStore()
 
# 创建一个AGI LLM模型,用于处理问题和生成答案
llm = AGILLLM()
 
# 创建一个查询-答案模型,用于将LLM集成到向量存储中
qa_model = RetrievalQAModel(
    llm=llm,
    vectorstore=vectorstore,
    temperature=0,
    top_k=1,
    max_length=20,
    n_best_size=5,
    socket_channel_timeout=300000
)
 
# 创建一个静态提示模板,用于构建提示
prompt_template = StaticPromptTemplate(prompt="你是一个在Oracle Cloud Infrastructure上部署的AI助手。请根据我的问题回答。")
 
# 创建一个对话链,将所有组件集成在一起
conversation_chain = ConversationChain(
    qa_model=qa_model,
    text_splitter=text_splitter,
    prompt_template=prompt_template
)
 
# 示例对话
question = "如何在OCI上部署一个模型?"
answer = conversation_chain.predict(question)
print(f"Question: {question}\nAnswer: {answer}")

这段代码展示了如何使用LangChain库中的不同组件来构建一个简单的对话系统。它首先创建了一个基于OpenAI的聊天模型,然后定义了文本分割和向量存储方法,接着配置了一个AGI LLM模型和查询-答案模型,并最终集成到对话链中。最后,它通过一个示例问题来演示如何使用这个对话系统。这个例子展示了如何将LangChain与Oracle Cloud Infrastructure (OCI) 服务结合,为用户提供有关在OCI上部署AI模型的帮助。

AI
最后修改于:2024年09月05日 09:28

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日