Android 手机部署whisper 模型

在Android手机上部署Whisper模型通常涉及以下步骤:

  1. 将Whisper模型转换为Android支持的格式,如.tflite
  2. 编写Android应用程序代码,使用Android的TensorFlow库来运行模型并处理输入输出。
  3. 将应用程序部署到手机上。

以下是一个简化的Android应用程序代码示例,用于加载和运行Whisper模型:




import android.os.Bundle;
import android.widget.TextView;
 
import androidx.appcompat.app.AppCompatActivity;
 
import org.tensorflow.lite.Interpreter;
 
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.nio.MappedByteBuffer;
import java.nio.channels.Channels;
import java.nio.channels.FileChannel;
import java.nio.file.Paths;
 
public class MainActivity extends AppCompatActivity {
 
    private Interpreter tflite;
 
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
 
        try {
            tflite = new Interpreter(loadModelFile(this));
        } catch (IOException e) {
            throw new RuntimeException("Error loading model", e);
        }
 
        // 假设你有一个输入数据inputData,处理模型预测,并获取输出
        float[] inputData = ...; // 准备你的输入数据
        float[] outputData = new float[1]; // 假设输出是一个值
 
        tflite.run(inputData, outputData);
 
        // 显示输出结果
        TextView textView = findViewById(R.id.text_view);
        textView.setText("Model Output: " + outputData[0]);
    }
 
    private MappedByteBuffer loadModelFile(Activity activity) throws IOException {
        AssetFileDescriptor fileDescriptor = activity.getAssets().openFd("model.tflite");
        FileChannel fileChannel = new FileInputStream(fileDescriptor.getFileDescriptor()).getChannel();
        long startOffset = fileDescriptor.getStartOffset();
        long declaredLength = fileDescriptor.getDeclaredLength();
        return fileChannel.map(FileChannel.MapMode.READ_ONLY, startOffset, declaredLength);
    }
}

确保你的model.tflite文件位于Android项目的assets文件夹中。这个例子假设模型接受一个输入并产生一个浮点数输出。你需要根据你的模型的具体情况调整输入输出处理代码。

部署应用到手机的步骤通常包括:

  1. 确保你的设备已经连接到电脑并开启USB调试模式。
  2. 使用Android Studio或者其他IDE构建(Build)你的应用程序。
  3. 在IDE中点击运行(Run)或者使用adb命令安装应用到手机上。

确保你的设备有足够的存储空间,并且已经安装了TensorFlow Lite库依赖。如果是在Android项目中使用TensorFlow Lite,可以在build.gradle文件中添加相应的依赖。




dependencies {
    implementation 'org.tensorflow:tensorflow-lite:2.3.0' // 使用适合你项目的版本
}

请注意,这个代码示例是一个简化的模板,你需要根据你的模型具体情况进行调整。

none
最后修改于:2024年09月04日 17:39

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日