Python:Numpy使用方法

Numpy是Python中用于科学计算的核心库之一,它提供了高性能的多维数组对象和大量的数学函数。以下是一些常用的Numpy方法和操作的示例:

  1. 创建数组:



import numpy as np
 
# 使用np.array创建数组
arr = np.array([1, 2, 3, 4, 5])
 
# 创建特定形状的零数组
zeros_arr = np.zeros(5)
 
# 创建特定形状的单位数组
ones_arr = np.ones((3, 4))
 
# 创建特定范围的整数数组
range_arr = np.arange(10)
  1. 数组操作:



# 数组形状变换
reshaped_arr = arr.reshape((2, 3))
 
# 数组的维度交换
swapped_arr = np.swapaxes(reshaped_arr, 0, 1)
 
# 数组的合并与分割
split_arr = np.split(arr, 2)
joined_arr = np.concatenate((arr, arr), axis=0)
  1. 数组索引与切片:



# 通过索引访问元素
element = arr[2]
 
# 通过切片访问子数组
sub_arr = arr[1:4]
  1. 数学运算:



# 数组与标量的运算
scaled_arr = arr * 2
 
# 数组与数组的运算
summed_arr = arr + np.ones(5)
 
# 应用数学函数
squared_arr = np.square(arr)
  1. 条件筛选:



# 根据条件筛选元素
filtered_arr = arr[arr > 3]
  1. 统计分析:



# 计算数组统计值
mean_value = np.mean(arr)
std_dev = np.std(arr)
  1. 线性代数操作:



# 矩阵乘法
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
product = np.dot(A, B)
 
# 矩阵求逆
inverse = np.linalg.inv(A)

这些是Numpy库中一些常用的方法,实际应用中可以根据需要选择合适的方法进行操作。

最后修改于:2024年08月25日 19:32

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日