Elasticsearch:使用在本地计算机上运行的 LLM 以及 Ollama 和 Langchain 构建 RAG 应用程序




from langchain.chat_models import ChatOpenAI
from langchain.llms import LLM
from langchain.prompts import StaticPromptTemplate
from langchain.vectorstores import VectorStore
from langchain.chains import ConversationChain
from langchain.chains.llm_chains import ConversationalLLM
 
# 初始化一个向OpenAI的GPT-3模型查询问题的ChatOpenAI实例
chat_model = ChatOpenAI(temperature=0)
 
# 创建一个向Ollama查询向量的LLM实例
ollama_llm = LLM(ollama_url="http://localhost:7500")
 
# 创建一个向Langchain的RAG查询向量的LLM实例
langchain_rag_llm = LLM(langchain_rag_url="http://localhost:7501")
 
# 创建一个向量库实例,用于存储向量
vectorstore = VectorStore.from_files("./data/vectors.pkl")
 
# 创建一个静态提示模板,用于构建对话提示
prompt_template = StaticPromptTemplate("You are a helpful AI assistant. You have a RAG file with information about a threat, vulnerability, or mitigation. You can answer factual questions about the content, classify items as either a threat, vulnerability, or mitigation, or list items of a specific type.")
 
# 创建一个基于LLM的对话链,使用向量库和提示模板
conversation_chain = ConversationalLLM(
    llms=[ollama_llm, langchain_rag_llm],
    vectorstore=vectorstore,
    prompt_template=prompt_template,
    chain_type="llm_only",
)
 
# 使用提供的ChatOpenAI实例和对话链实例
conversation_agent = ConversationChain(chat_model, conversation_chain)
 
# 示例对话
print(conversation_agent.converse("What is a vulnerability?"))

这个代码示例展示了如何初始化一个简单的对话代理,它使用了三种不同的LLM:一个是直接与OpenAI GPT-3模型交互的ChatOpenAI实例,另一个是通过Ollama服务查询向量的LLM实例,以及一个通过Langchain的RAG查询向量的LLM实例。同时,它使用了一个向量库来存储向量,并定义了一个静态提示模板来构建对话提示。最后,它创建了一个对话链实例,该实例可以接受用户输入并生成相应的回复。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日