Python赋能AI数据分析开启人工智能新时代
# 导入必要的库
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 读取数据
data = pd.read_csv('data.csv')
# 分离特征和目标变量
X = data.drop('Class', axis=1)
y = data['Class']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建并训练随机森林分类器
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier.fit(X_train, y_train)
# 进行预测
y_pred = rf_classifier.predict(X_test)
# 评估模型性能
print(f"模型准确度: {accuracy_score(y_test, y_pred):.2f}")
这段代码展示了如何使用Python和随机森林算法(一个流行的机器学习模型)来进行分类任务。代码中包含数据读取、特征工程、模型训练、模型评估,并输出了模型的准确度。这是一个典型的AI应用场景,展示了如何用Python和机器学习方法处理和评估数据。
评论已关闭