scrapy框架中间件的使用以及scrapy-redis实现分布式爬虫
    		       		warning:
    		            这篇文章距离上次修改已过433天,其中的内容可能已经有所变动。
    		        
        		                
                在Scrapy中使用中间件可以拦截并修改请求和响应的处理过程。以下是一个简单的示例,展示如何创建一个自定义中间件:
from scrapy import signals
 
class CustomMiddleware:
    @classmethod
    def from_crawler(cls, crawler):
        # 初始化中间件时,从爬虫设置中获取配置
        # ...
        return cls()
 
    def process_request(self, request, spider):
        # 在发送请求前,可以修改请求或做其他处理
        # ...
        return None  # 如果不需要修改请求,返回None
 
    def process_response(self, request, response, spider):
        # 在接收响应后,可以修改响应或做其他处理
        # ...
        return response  # 返回修改后的响应
 
    def process_exception(self, request, exception, spider):
        # 在处理过程中出现异常时,可以做异常处理或记录
        # ...
        return None  # 如果不想忽略异常,可以重新抛出异常要在Scrapy项目中启用这个中间件,需要在settings.py文件中添加它:
DOWNLOADER_MIDDLEWARES = {
    'myproject.middlewares.CustomMiddleware': 543,
}关于Scrapy-Redis实现分布式爬虫,以下是一个基本的配置示例:
# settings.py
 
# 启用Scrapy-Redis组件
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
ITEM_PIPELINES = {
    'scrapy_redis.pipelines.RedisPipeline': 400,
}
 
# 指定Redis的连接信息
REDIS_HOST = 'localhost'
REDIS_PORT = 6379
 
# 其他可选配置
REDIS_PARAMS = {
    'decode_responses': True,
    'ssl': False,
}在这个配置中,爬虫使用Scrapy-Redis的调度器来管理任务队列,使用其重复过滤器来避免重复请求,并且使用Scrapy-Redis的管道将数据存储到Redis中。这样,多个爬虫可以共享同一个任务队列和去重记录,从而实现分布式爬取。
评论已关闭