超详细 | 差分进化算法原理及其实现(Matlab/Python)
function [best_y, best_x] = de_optim(objective_func, nvars, bounds, popsize, max_iter, display_progress)
% 差分进化优化算法示例
% objective_func: 目标函数句柄
% nvars: 变量数量
% bounds: 变量的上下界,例如: bounds = [lb, ub];
% popsize: 种群大小
% max_iter: 最大迭代次数
% display_progress: 是否显示进度
% 初始化种群和参数
pop = initializega(nvars, popsize, bounds);
F = zeros(popsize, 1);
CR = 0.7; % 交叉率
F = de_eval(pop, objective_func);
[best_fit, best_index] = min(F);
best_x = pop(:, best_index);
best_y = best_fit;
for t = 1:max_iter
% 选择操作
pop = select(pop, F);
% 交叉操作
pop = cross(pop, CR);
% 变异操作
pop = mut(pop, nvars, 0.1);
% 评估新种群
F = de_eval(pop, objective_func);
% 更新最佳个体
[best_fit, best_index] = min(F);
best_x = pop(:, best_index);
best_y = best_fit;
if display_progress
disp(['Iteration: ', num2str(t), ' Best Fitness: ', num2str(best_fit)]);
end
end
end
function pop = initializega(nvars, popsize, bounds)
% 初始化种群
pop = rand(nvars, popsize) * (bounds(:, 2) - bounds(:, 1)) + repmat(bounds(:, 1), nvars, 1);
end
function F = de_eval(pop, objective_func)
% 评估种群
[~, nvars] = size(pop);
F = zeros(nvars, 1);
for i = 1:nvars
F(i) = objective_func(pop(:, i));
end
end
function pop = select(pop, F)
% 选择操作
nvars = size(pop, 2);
for i = 1:nvars
if rand() < 0.9
pop(:, i) = best(pop, F, i);
end
end
end
function pop = cross(pop, CR)
% 交叉操作
[~, nvars] = size(pop);
for i = 1:2:nvars-1
if rand() < CR
r = randperm(nvars);
pop(:, [i, i+1]) = pop(:, [r(1), r(2)]);
end
end
end
function pop = mut(pop, nvars, F)
% 变异操作
for i = 1:nvars
if rand() < F
r = randperm(nvars);
pop(:, i) = pop(:, r(1));
end
end
end
function x = best(pop, F, index)
% 返回当前最佳个体
[~, nvars] = size(pop);
best_index = find(F == min(F));
if index ~= best_index
x = pop(:, best_index);
else
x = pop(:, index);
end
end
这个代码实例提供了一个简化的差分进化算法框架,包括初始化、选择、交叉和变异操作。在这个框架中,我们使用Matlab语言实现了一个简单的差分进化优化过程。这个例子展示了如何使用Matlab进行基本的差分进化优化,并
评论已关闭