【DPFSP问题】基于斑马优化算法ZOA求解分布式置换流水车间调度(DPFSP附Matlab代码
在Matlab中,ZOA(Zoom Optimization Algorithm)可以用来求解DPFSP(Distributed Permutation Flowshop Scheduling)问题。以下是一个简化的Matlab代码示例,展示了如何使用ZOA求解DPFSP问题的框架:
function [best_sol, best_cost] = zoa_for_dpfsp(problem, params)
% 初始化种群
pop_size = params.pop_size;
population = init_population(problem, pop_size);
% 迭代次数
max_iters = params.max_iters;
% 存储最优解
[best_sol, best_cost] = get_best_sol(population);
for iter = 1:max_iters
% 计算适应度
fitness = calculate_fitness(population, problem);
% 选择操作
selection_prob = calculate_selection_prob(population, fitness);
offspring = selection(population, selection_prob);
% 交叉操作
for i = 1:pop_size
if rand() < params.pc
cross_over_points = randperm(problem.n-1);
cross_over_points = [1 cross_over_points+1];
offspring{i} = cross_over(population{i}, offspring, cross_over_points);
end
end
% 变异操作
for i = 1:pop_size
if rand() < params.pm
offspring{i} = mutation(offspring{i}, problem);
end
end
% 更新种群
population = offspring;
% 更新最佳解
[best_sol, best_cost] = get_best_sol(population);
end
end
function population = init_population(problem, pop_size)
% 初始化pop_size个个体
population = cell(pop_size, 1);
for i = 1:pop_size
population{i} = randperm(problem.n);
end
end
function fitness = calculate_fitness(population, problem)
% 计算适应度,这里需要实现DPFSP的适应度函数
end
function selection_prob = calculate_selection_prob(population, fitness)
% 计算选择概率
end
function offspring = selection(population, selection_prob)
% 根据选择概率进行选择操作
end
function offspring = cross_over(parent, offspring, cross_over_points)
% 实现交叉操作
end
function offspring = mutation(individual, problem)
% 实现变异操作
end
function [best_sol, best_cost] = get_best_sol(population)
% 寻找种群中最佳的个体
end
这个代码框架提供了ZOA求解DPFSP问题的基本步骤,包括初始化、计算适应度、选择、交叉和变异操作,以及更新最优解。具体的DPFSP适应度函数、选择方法、交叉策略和变异策略需要根据问题的具体细节来实现。
评论已关闭