Python多进程详解

Python多进程是一种在操作系统级别并行执行代码的方法。Python提供了一个模块multiprocessing,它提供了一种简单的方法来创建和管理进程。

  1. 创建进程

multiprocessing模块提供了一个Process类,可以用这个类来创建一个进程。




from multiprocessing import Process
 
def job():
    print("Hello from Process!")
 
if __name__ == '__main__':
    p = Process(target=job)
    p.start()
    p.join()

在上面的代码中,我们创建了一个进程p,并将目标函数job指定为这个进程要执行的任务。然后我们启动这个进程,并调用p.join()方法等待进程完成。

  1. 使用进程池

如果你需要创建大量的进程,可以使用multiprocessing模块的Pool类。




from multiprocessing import Pool
 
def job(x):
    return x*x
 
if __name__ == '__main__':
    with Pool(processes=4) as p:
        result = p.map(job, [1, 2, 3, 4, 5])
        print(result)  # Prints: [1, 4, 9, 16, 25]

在上面的代码中,我们创建了一个容量为4的进程池,并将任务map到这个进程池中。map函数会将job函数应用到列表[1, 2, 3, 4, 5]的每一个元素,并返回结果列表。

  1. 使用进程间通信

multiprocessing模块提供了一些工具,如Queue、Pipe和Value和Array,可以用来在进程间进行通信。




from multiprocessing import Process, Queue
 
def job(q):
    q.put('Hello from Process!')
 
if __name__ == '__main__':
    q = Queue()
    p = Process(target=job, args=(q,))
    p.start()
    print(q.get())  # Prints: Hello from Process!
    p.join()

在上面的代码中,我们创建了一个进程p,并在进程p中运行了job函数。我们使用Queue在主进程和进程p之间通信。我们将一个消息放入队列中,然后在主进程中我们从队列中取出这个消息并打印。

  1. 共享资源

multiprocessing模块提供了一些特殊的类,如Manager,可以用来在进程间共享资源。




from multiprocessing import Process, Manager
 
def job(d, key, value):
    d[key] = value
 
if __name__ == '__main__':
    with Manager() as manager:
        d = manager.dict()
        p = Process(target=job, args=(d, 'key', 'value'))
        p.start()
        p.join()
        print(d)  # Prints: {'key': 'value'}

在上面的代码中,我们创建了一个进程p,并在进程p中运行了job函数。我们使用Manager在多个进程之间共享一个字典。我们在字典中设置一个键值对,然后在主进程中我们打印这个字典并查看结果。

以上就是Python多进程的基本使用方法。

最后修改于:2024年08月17日 20:17

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日