python农产品价格预测系统 爬虫+线性回归预测算法+Flask框架 大数据毕业设计

由于这个问题涉及的内容较多且涉及到一些大数据的处理,我无法在一个回答中提供完整的代码。但我可以提供一个简化的思路和代码实例。

  1. 数据获取:使用Python爬虫从农产品价格网站获取数据。
  2. 数据预处理:清洗数据,处理缺失值,转换为适合建模的格式。
  3. 特征选择:选择有区分性的特征用于建模。
  4. 模型训练:使用线性回归或其他预测模型进行价格预测。
  5. 部署:使用Flask框架部署模型,使其可通过Web界面进行访问。

以下是一个简化的线性回归模型训练和部署的代码示例:




from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from flask import Flask, request, jsonify
import pandas as pd
 
# 初始化Flask应用
app = Flask(__name__)
 
# 示例特征和目标值
features = [[1, 2], [3, 4], [5, 6]]
target = [10, 20, 30]
 
# 线性回归模型
model = LinearRegression()
 
# 数据训练
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2)
model.fit(X_train, y_train)
 
# 预测接口
@app.route('/predict', methods=['POST'])
def predict():
    data = request.json
    prediction = model.predict([data['features']])
    return jsonify({'prediction': prediction[0]})
 
if __name__ == '__main__':
    app.run(debug=True)

这个代码示例展示了如何初始化一个Flask应用,训练一个简单的线性回归模型,并通过Flask提供一个RESTful API接口进行预测。

请注意,这个代码示例并不包括数据爬虫部分,因为这需要具体的网站分析和API设计。数据爬虫通常涉及到反爬虫策略和加密数据处理,并且对于大数据设计,数据处理和模型训练会更加复杂。

对于完整的系统设计,你需要根据实际的农产品价格数据源和爬虫技术进行定制。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日