路径规划 | 蚁群算法图解与分析(附ROS C++/Python/Matlab仿真)
由于原代码较为复杂且涉及到路径规划的具体应用,以下是一个简化的AntColonyOptimization(蚁群优化)算法的核心函数示例,用于模拟路径规划问题中的蚁洞选择和信息更新过程。
#include <iostream>
#include <vector>
#include <cmath>
#include <random>
#include <algorithm>
using namespace std;
class AntColony {
public:
void updateInformation(double alpha, double beta, double rho);
void selectAntHole();
void moveAnt();
void evaporate();
void deposit();
private:
vector<vector<double>> tau;
vector<vector<double>> pheromone;
vector<int> antLocation;
int nAnts;
int nCities;
double delta;
};
void AntColony::updateInformation(double alpha, double beta, double rho) {
tau.clear();
pheromone.clear();
for (int i = 0; i < nCities; ++i) {
vector<double> rowTau(nCities, 0.0);
vector<double> rowPheromone(nCities, 1.0);
tau.push_back(rowTau);
pheromone.push_back(rowPheromone);
}
for (int i = 0; i < nAnts; ++i) {
double probabilitySum = 0.0;
for (int j = 0; j < nCities - 1; ++j) {
double probability = (alpha * tau[antLocation[i]][j]) / (rho * pheromone[antLocation[i]][j]);
probabilitySum += probability;
}
double cumulativeProbability = 0.0;
for (int j = 0; j < nCities - 1; ++j) {
double probability = (alpha * tau[antLocation[i]][j]) / (rho * pheromone[antLocation[i]][j]);
cumulativeProbability += probability / probabilitySum;
if (uniform_real_distribution<double>(0.0, 1.0)(mt19937_rng) < cumulativeProbability) {
antLocation[i] = j;
break;
}
}
}
}
void AntColony::selectAntHole() {
// 选择蚁洞的逻辑
}
void AntColony::moveAnt() {
// 移动蚁的逻辑
}
void AntColony::evaporate() {
// 衰减的逻辑
}
void AntColony::deposit() {
// 存储的逻辑
}
int main() {
AntColony aco;
aco.updateInformation(1.0, 2.0, 0.1);
// ...其他操作
return 0;
}
这个简化的例子展示了一个模拟的AntColony类,其中包含了一个更新信息的方法。这个方法模拟了蚁洞的选择和蚁的移动过程,但没有包含完整的逻辑。这样的实现方式可以帮助理解蚁群算法的核心机制,而不会陷于复杂的实现细节之中。
评论已关闭