CasADi - 最优控制开源 Python/MATLAB 库

CasADi 是一个开源的优化库,主要用于求解大型的不连续的非线性方程组,常用于仿真仿真过程中的动态优化问题。

以下是一个使用CasADi库进行动态优化的简单示例:




import casadi as cas
import numpy as np
 
# 定义动态系统的状态变量
x = cas.MX.sym('x', 1)
v = cas.MX.sym('v', 1)
 
# 定义动态系统的输入
f = cas.MX.sym('f', 1)
 
# 定义状态空间方程
x_dot = v
v_dot = f
 
# 定义目标函数和约束条件
cost = x
constraints = v >= 0
 
# 创建CasADi的优化问题
opt = cas.Opti()
opt.subject_to(constraints)
opt.minimize(cost)
 
# 定义一个求解器,并添加动态系统的状态和输入
solver = opt.solver("ipopt")
solver.set_linear_solver("ma57")
 
# 初始化状态和输入
x_init = 0
v_init = 1
f_init = 0
 
# 创建一个时间点的向量
tf = 1
N = 10
t = cas.linspace(0, tf, N)
 
# 对每个时间点进行优化
for i in range(N):
    # 设置当前时间点的状态和输入
    opt.set_value(x, x_init)
    opt.set_value(v, v_init)
    opt.set_value(f, f_init)
    
    # 求解优化问题
    opt.solve()
    
    # 更新初始状态和输入,为下一个时间点准备
    x_init = opt.value(x)
    v_init = opt.value(v)
    f_init = opt.value(f)
    
    # 输出结果
    print(f"Time step {i}: x = {x_init}, v = {v_init}, f = {f_init}")

这个示例展示了如何使用CasADi库来求解一个简单的动态优化问题。在这个问题中,我们有一个状态变量x和v,以及一个输入f。我们的目标是最小化状态x,同时满足v的非负约束。这个过程会在每个时间步长上重复进行,每次优化都会更新初始状态和输入。

最后修改于:2024年08月16日 10:25

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日