【爬虫+数据清洗+可视化分析】python文本挖掘“狂飙“的哔哩哔哩评论




import requests
import json
import pandas as pd
from tqdm import tqdm
 
# 爬取哔哩哔哩评论的函数
def crawl_danmaku(video_id, page_num):
    danmaku_list = []
    for i in range(1, page_num+1):
        url = f'https://api.bilibili.com/x/v2/dm/list.so?oid={video_id}&type=1&pn={i}&ps=20'
        response = requests.get(url)
        if response.status_code == 200:
            danmaku_data = json.loads(response.text)
            for item in danmaku_data['data']['danmakus']:
                text = item['text']
                time = item['progress']
                danmaku_list.append([text, time])
    return danmaku_list
 
# 数据清洗和分析的函数
def analyze_danmaku(danmaku_list):
    df = pd.DataFrame(danmaku_list, columns=['Comment', 'Time'])
    # 将评论时间转换为分钟
    df['Minute'] = df['Time'] // 1000 // 60
    # 统计每分钟内发言的频率
    minute_count = df.groupby('Minute')['Comment'].count().sort_values(ascending=False)
    # 找出频率超过阈值的分钟,并可视化
    threshold = 100  # 设定频率阈值
    high_frequency_minutes = minute_count[minute_count > threshold].index
    minute_count[minute_count > threshold].plot(title='Comment Frequency over Time')
 
# 视频ID,页数
video_id = '请在此处输入视频ID'
page_num = 5  # 假设我们只爬取前5页的评论
danmaku_list = crawl_danmaku(video_id, page_num)
analyze_danmaku(danmaku_list)

这段代码提供了一个简化的示例,展示了如何使用Python进行简单的哔哩哔哩评论文本挖掘。首先,我们定义了一个爬取评论的函数,然后定义了一个分析和清洗数据的函数。在实际应用中,你需要替换掉示例中的video\_id,并根据需要调整page\_num来获取更多的评论数据。

最后修改于:2024年08月13日 18:07

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日