LSTM原理+实战(Python)

LSTM(Long Short-Term Memory)是一种特殊的循环神经网络(RNN),用于处理具有长期依赖关系的时间序列数据。

LSTM的核心思想是通过一种名为“遗忘门”和“输入门”的机制来控制信息的流动,以及一个名为“记忆单元”的结构来存储信息。

以下是使用Keras库在Python中实现LSTM的示例代码:




from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
import numpy as np
 
# 假设我们有一个时间序列数据集
data = np.random.random((1000, 5))  # 1000个时间步,每个时间步5个特征
 
# 定义模型
model = Sequential()
model.add(LSTM(50, input_shape=(None, 5)))  # LSTM层,50个隐藏单元
model.add(Dense(1))  # 全连接层,用于回归
 
# 编译模型
model.compile(optimizer='adam', loss='mse')
 
# 训练模型
model.fit(data, np.zeros((1000, 1)), epochs=10, verbose=2)
 
# 进行预测(可选)
print(model.predict(data[:1]))

这段代码创建了一个简单的LSTM模型,用于时间序列数据的学习和预测。模型接收一个形状为(1000, 5)的数据集,其中1000是时间步的数量,5是每个时间步的特征数,LSTM层有50个隐藏单元。模型使用随机初始化权重进行训练,输出层是一个全连接层用于回归任务。模型被编译并在数据集上训练10个周期,之后进行预测。

最后修改于:2024年08月13日 09:36

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日