由于这个问题涉及的内容较多且涉及到实际的数据爬取和分析,我将提供一个简化的示例来说明如何使用Python进行基本的情感分析。
import jieba
import numpy as np
from wordcloud import WordCloud
import matplotlib.pyplot as plt
# 分词并去除停用词
def segment_sentence(sentence):
stopwords = set()
with open('stopwords.txt', 'r', encoding='utf-8') as f:
for line in f:
stopwords.add(line.strip())
seg_list = jieba.cut(sentence, cut_all=True)
return [w for w in seg_list if w not in stopwords and w != '']
# 情感分析函数
def sentiment_analysis(sentence):
seg_list = segment_sentence(sentence)
positive_words = set(['好', '优秀', '优秀', '高', '大', '好', '及格', '可以', '应该', '适当'])
negative_words = set(['差', '不行', '差', '低', '不', '不适宜'])
score = 0
for word in seg_list:
if word in positive_words:
score += 1
elif word in negative_words:
score -= 1
return score
# 生成词云
def generate_wordcloud(text):
wordcloud = WordCloud(font_path='simhei.ttf', background_color='white', max_words=2000)
wordcloud.generate_from_text(text)
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.show()
# 示例文本
text = "这部手机非常好用,拍照效果优秀,性能也很高,但是价格略高。"
# 情感分析得分
sentiment_score = sentiment_analysis(text)
print(f"情感得分: {sentiment_score}")
# 生成词云
generate_wordcloud(text)
这个简化的示例展示了如何进行基本的情感分析,并生成词云。实际应用中,你需要根据你的数据集调整停用词和情感词典,并对爬取的数据进行清洗和预处理。