2024-08-17

浅拷贝(copy):拷贝父对象,不会拷贝对象内部的子对象。

深拷贝(deepcopy):拷贝父对象以及对象内部的子对象。

浅拷贝示例:




import copy
 
original_list = [1, 2, [3, 4]]
shallow_copy = copy.copy(original_list)
 
original_list[2][0] = "changed"
 
print(original_list)  # 输出: [1, 2, ['changed', 4]]
print(shallow_copy)   # 输出: [1, 2, ['changed', 4]]

深拷贝示例:




import copy
 
original_list = [1, 2, [3, 4]]
deep_copy = copy.deepcopy(original_list)
 
original_list[2][0] = "changed"
 
print(original_list)  # 输出: [1, 2, ['changed', 4]]
print(deep_copy)      # 输出: [1, 2, [3, 4]]

在深拷贝中,原始列表中的子列表没有被改变,而在浅拷贝中原始列表中的子列表被改变了。

2024-08-17

PyTorch版本、Python版本和pytorch\_lightning版本之间有相互关联,并且它们必须相互兼容才能正常工作。为了保证环境的稳定性和代码的正常运行,最好参考它们的官方文档或GitHub的release notes来选择合适的版本组合。

以下是一个简单的版本匹配指南,它提供了一个基本的指导原则,但请务必查看最新的官方文档,因为这些库可能会不断更新,并且版本兼容性可能会有变化。




PyTorch版本:
   1.x 兼容 Python 2.7, 3.5, 3.6, 3.7
   1.x 不兼容 Python 3.8+
   2.x 不兼容 Python 2.7
   2.x 兼容 Python 3.6, 3.7, 3.8, 3.9
 
Python版本:
   通常,PyTorch 1.x 兼容 Python 2.7 和 3.6+,而 PyTorch 2.x 兼容 Python 3.6 及以上版本。
 
pytorch_lightning版本:
   请参考 pytorch_lightning 的官方release notes,查看支持的PyTorch版本和Python版本。

在安装时,你应该选择与你的Python和PyTorch版本兼容的pytorch\_lightning版本。例如,如果你使用的是Python 3.8和PyTorch 1.x,那么你不能安装最新版本的pytorch\_lightning,因为它可能不支持这些版本。

为了找到合适的版本组合,你可以使用pip进行安装,指定版本号:




pip install pytorch_lightning==x.y.z
pip install torch==1.x

或者,如果你使用的是Python 3.8和PyTorch 2.x:




pip install pytorch_lightning==x.y.z
pip install torch==2.x

请替换x.y.z为你选择的pytorch\_lightning版本号。始终参考官方文档获取最新和最准确的版本信息。

2024-08-17



from flask import Flask, render_template, request, redirect, url_for
 
app = Flask(__name__)
 
# 假设这是一个简单的用户模型
users = {'admin': 'password123'}
 
@app.route('/')
def index():
    return render_template('index.html')
 
@app.route('/login', methods=['GET', 'POST'])
def login():
    if request.method == 'POST':
        username = request.form['username']
        password = request.form['password']
        if username and password and username in users and users[username] == password:
            return redirect(url_for('index'))
        return '登录失败'
    return render_template('login.html')
 
if __name__ == '__main__':
    app.run(debug=True)

这段代码展示了如何使用Flask框架创建一个简单的登录系统。在这个例子中,我们使用了一个简单的用户字典来存储用户名和密码,并且在登录时进行了验证。如果用户名和密码正确,用户将被重定向到首页;如果登录失败,则会显示错误消息。这个例子教会开发者如何处理表单数据、重定向以及如何在Flask中使用模板。

2024-08-17

由于原代码已经非常完整,这里只提供关键函数的实现和注释。




import requests
import json
import pandas as pd
 
# 请求头部,模拟APP请求
headers = {
    'Cookie': '你的微博Cookie',
    'User-Agent': '你的User-Agent',
    'Referer': 'https://weibo.com/',
}
 
# 获取微博用户信息
def get_user_info(user_id):
    url = f'https://weibo.com/p/100505{user_id}/info?is_search=0&visible=0&is_tag_user=0'
    response = requests.get(url, headers=headers)
    if response.status_code == 200:
        data = response.json()
        return {
            'user_id': user_id,
            'name': data['data']['user']['name'],
            'gender': data['data']['user']['gender'],
            'description': data['data']['user']['description'],
            'follows_count': data['data']['user']['follows_count'],
            'fans_count': data['data']['user']['fans_count'],
            'weibo_count': data['data']['user']['weibo_count'],
        }
    else:
        return None
 
# 获取微博用户信息并保存到CSV
def save_user_info_to_csv(user_id):
    user_info = get_user_info(user_id)
    if user_info:
        df = pd.DataFrame([user_info])
        df.to_csv('user_info.csv', mode='a', header=False, index=False)
 
# 主函数,用于爬取微博榜单
def crawl_weibo_ranking(ranking_type, top_num):
    for rank in range(1, top_num + 1):
        user_id = get_user_id_from_ranking(ranking_type, rank)
        if user_id:
            save_user_info_to_csv(user_id)
            print(f'正在抓取第{rank}名用户信息...')
 
# 获取微博榜单上的用户ID
def get_user_id_from_ranking(ranking_type, rank):
    url = f'https://weibo.com/p/100505{ranking_type}/ranklist?topnav=1&rank={rank}&is_search=0&visible=0&is_tag_user=0'
    response = requests.get(url, headers=headers)
    if response.status_code == 200:
        data = response.json()
        return data['data']['user']['id']
    else:
        return None
 
# 调用函数爬取微博榜单,例如:热门榜单
crawl_weibo_ranking('hot', 100)

这段代码提供了两个关键函数:get_user_infosave_user_info_to_csvget_user_info 函数负责请求微博用户的个人信息页面,并解析返回的数据。save_user_info_to_csv 函数则负责将用户信息保存到CSV文件中。这两个函数是爬取微博榜单的基础,并且演示了如何使用Python进行网络请求和数据解析。

2024-08-17



import requests
 
def get_huawei_interview_questions(url):
    headers = {
        'User-Agent': 'Mozilla/5.0',
        'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
        'Accept-Language': 'en',
        'Connection': 'keep-alive',
    }
    try:
        response = requests.get(url, headers=headers)
        if response.status_code == 200:
            print("Success:", response.text)
        else:
            print("Failed to retrieve the webpage")
    except requests.exceptions.RequestException as e:
        print(f"An error occurred: {e}")
 
url = "https://www.huawei.com/en/interview-questions"  # 华为面试问题页面
get_huawei_interview_questions(url)

这段代码使用了Python的requests库来获取华为面试问题页面的内容。首先定义了一个get_huawei_interview_questions函数,它接受一个URL作为参数,并设置了合适的请求头。然后使用requests.get方法来发送HTTP GET请求,并处理可能发生的异常。如果页面成功获取,它会打印出响应的文本内容;如果发生错误,它会打印出错误信息。

2024-08-17

Selenium 4 自动获取驱动(如 ChromeDriver, GeckoDriver 等)的常见问题及解决方法如下:

  1. 驱动不兼容

    • 解释:新版本的 Selenium 4 可能不兼容旧版本的浏览器驱动。
    • 解决方法:确保 Selenium 版本与浏览器驱动版本相兼容。可以访问官方文档或对应驱动的 GitHub 页面查看兼容性信息。
  2. 驱动路径问题

    • 解释:Selenium 可能找不到驱动的正确路径。
    • 解决方法:确保在指定 WebDriver 时传递正确的驱动路径。
  3. 权限问题

    • 解释:在某些操作系统上,运行 Selenium 可能因为权限不足导致无法启动浏览器。
    • 解决方法:确保运行 Selenium 的用户有足够权限,或者以管理员身份运行。
  4. 环境变量问题

    • 解释:在某些操作系统中,系统的环境变量可能没有正确设置驱动的路径。
    • 解决方法:手动将驱动程序的路径添加到系统的环境变量中。
  5. 浏览器更新问题

    • 解释:如果浏览器版本过旧,可能无法正确工作。
    • 解决方法:确保浏览器是最新版本,或者下载与之兼容的驱动版本。
  6. 驱动下载问题

    • 解释:手动下载的驱动可能不完整或损坏。
    • 解决方法:使用 Selenium 提供的驱动管理功能自动下载和配置驱动。
  7. 其他错误

    • 解释:可能是其他原因导致的错误,例如网络问题、Selenium 配置错误等。
    • 解决方法:根据错误信息具体分析解决。

在编写爬虫时,请确保遵循相关法律法规,尊重网站的robots.txt规则,并使用合适的用户代理(User-Agent),避免对网站的服务造成影响。

2024-08-17

爬虫的基本原理是通过模拟人的网络行为(如打开链接、提交表单等),自动下载网络上的内容。以下是一个简单的爬虫示例,使用Python的requests库来下载网页内容。




import requests
 
def download_website_content(url):
    try:
        response = requests.get(url)  # 发送HTTP GET请求
        if response.status_code == 200:  # 请求成功
            return response.text  # 返回网页内容
        else:
            return "Failed to retrieve the webpage"
    except requests.exceptions.RequestException:
        return "Failed to connect to the server"
 
url = "http://example.com"  # 替换为你想爬取的网址
print(download_website_content(url))

这段代码定义了一个函数download_website_content,它接受一个URL作为参数,使用requests库发送一个GET请求,并返回下载的内容。如果请求失败,它将打印出错误信息。这是爬虫最基本的工作方式。

2024-08-17



import requests
from bs4 import BeautifulSoup
import re
import pandas as pd
 
# 获取今日头条热搜索关键词
def get_touTiao_search_keywords():
    url = 'https://www.toutiao.com/'
    headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
    response = requests.get(url, headers=headers)
    if response.status_code == 200:
        return response.text
 
# 解析网页获取热搜索关键词
def parse_touTiao_search_keywords(html):
    soup = BeautifulSoup(html, 'lxml')
    key_words = soup.select('span[class="title-content-title"]')
    key_words = [i.text.strip() for i in key_words]
    return key_words
 
# 保存数据
def save_data(data, filename):
    df = pd.DataFrame(data)
    df.to_csv(filename + '.csv', index=False, encoding='utf_8_sig')
 
# 主函数
def main():
    html = get_touTiao_search_keywords()
    key_words = parse_touTiao_search_keywords(html)
    save_data(key_words, 'toutiao_search_keywords')
 
if __name__ == '__main__':
    main()

这段代码首先定义了获取今日头条首页的get_touTiao_search_keywords函数,使用了requests库来发送请求,并使用了一个假的User-Agent来模拟浏览器访问。然后定义了解析网页的parse_touTiao_search_keywords函数,使用了BeautifulSoup库来解析HTML,并使用CSS选择器找到关键词。最后,定义了一个保存数据的save_data函数,使用了pandas库将数据保存为CSV文件。最后,在main函数中调用了这些函数来完成整个爬取和保存的过程。

2024-08-17

以下是一个简化的Python示例代码,用于模拟实现一个简单的网络爬虫,该爬虫从一个假设的农村振兴网站上抓取信息。




import requests
from bs4 import BeautifulSoup
 
# 模拟的农村振兴网站URL
url = 'http://rural-revival.com/'
 
# 发送HTTP请求
response = requests.get(url)
 
# 检查请求是否成功
if response.status_code == 200:
    # 使用BeautifulSoup解析网页内容
    soup = BeautifulSoup(response.text, 'html.parser')
    
    # 假设我们要抓取的信息是每篇文章的标题
    # 找到所有的文章标题
    articles = soup.find_all('h2', class_='article-title')
    
    # 打印每篇文章的标题
    for article in articles:
        print(article.text)
else:
    print(f"Error: {response.status_code}")

这段代码使用了requests库来发送HTTP请求,以及BeautifulSoup库来解析HTML内容。这是一个非常基础的爬虫示例,仅用于教学目的。在实际应用中,你需要处理更复杂的情况,例如处理网页中的动态加载内容、处理登录验证、应对反爬虫策略等。

2024-08-17



import requests
import json
import matplotlib.pyplot as plt
 
# 微博用户ID
user_id = 'your_user_id'
 
# 微博主页数据API
url = f'https://m.weibo.cn/api/container/getIndex?type=uid&value={user_id}'
 
# 发送请求获取数据
response = requests.get(url)
data = json.loads(response.text.strip('var data = '))
 
# 提取用户名和关注数
user_name = data['data']['userInfo']['screen_name']
follow_count = data['data']['userInfo']['follow_count']
 
# 绘制关注数可视化图表
x = [user_name]
y = [follow_count]
plt.bar(x, y)
plt.title('关注数可视化')
plt.xlabel('用户名')
plt.ylabel('关注数')
plt.show()

这段代码展示了如何使用Python的requests库来发送HTTP请求,以及如何使用json库来解析返回的JSON数据。然后,它提取了用户的名字和关注数,并使用matplotlib库创建了一个条形图来可视化这些数据。这个例子简单直观地展示了如何通过爬取微博数据来进行可视化分析。