2024-08-10

配置全分布式Hadoop使用Docker容器的步骤概要如下:

  1. 准备Dockerfile来构建Hadoop镜像。
  2. 创建一个Hadoop配置文件,用于设置Hadoop集群参数。
  3. 使用docker-compose来启动所有容器并配置网络。

以下是一个简化的示例:

Dockerfile:




FROM openjdk:8-jdk
 
# 安装Hadoop
RUN apt-get update && apt-get install -y tar \
 && curl -fSL https://downloads.apache.org/hadoop/common/hadoop-3.2.2/hadoop-3.2.2.tar.gz | tar -xz -C /opt \
 && ln -s /opt/hadoop-3.2.2 /opt/hadoop \
 && rm -rf /opt/hadoop-3.2.2/lib/log4j-slf4j-impl-*.jar \
 && curl -fSL https://www.apache.org/dist/hadoop/hdfs-hadoop-hdfs/keytabs/HDFS_DELEGATION_KEY.tar.gz | tar -xz \
 && mv HDFS_DELEGATION_KEY.headless /opt/hadoop/etc/hadoop/dn_delegation_key.keystore \
 && mv HDFS_DELEGATION_KEY.login /opt/hadoop/etc/hadoop/dn_delegation_token.keytab
 
# 设置环境变量
ENV HADOOP_HOME /opt/hadoop
ENV PATH $PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
 
# 复制Hadoop配置文件
COPY hadoop-config/* $HADOOP_HOME/etc/hadoop/

hadoop-config/ 目录下的配置文件可能包括:

  • core-site.xml
  • hdfs-site.xml
  • mapred-site.xml
  • yarn-site.xml
  • slaves

docker-compose.yml:




version: '3'
 
services:
  namenode:
    image: hadoop-image
    ports:
      - "50070:50070"
    command: hdfs --daemon start namenode
 
  datanode:
    image: hadoop-image
    depends_on:
      - namenode
    command: hdfs --daemon start datanode
 
  secondarynamenode:
    image: hadoop-image
    depends_on:
      - namenode
    command: hdfs --daemon start secondarynamenode
 
  resourcemanager:
    image: hadoop-image
    depends_on:
      - namenode
    ports:
      - "8088:8088"
    command: yarn --daemon start resourcemanager
 
  nodemanager:
    image: hadoop-image
    depends_on:
      - datanode
      - resourcemanager
    command: yarn --daemon start nodemanager
 
networks:
  default:
    driver: bridge

确保你有5个运行Docker的机器,每个机器上都安装Docker和docker-compose。在每台机器上克隆你的Hadoop配置和Dockerfile,然后构建镜像并运行docker-compose up

注意:这个示例假设你有5个可用的Docker容器环境。在实际部署中,你可能需要调整网络设置,并确保所有容器都能够通信。

2024-08-10

麻雀算法是一种进化算法,可以被用来进行分布式无人机编队航迹规划和碰撞检测。以下是一个简化的例子,展示了如何使用麻雀算法进行无人机编队的航迹规划:




function [sol, fitness] = mA_SODA(params)
    % 参数初始化
    n = params.n; % 无人机数量
    % ... 其他参数初始化
 
    % 初始化麻雀群
    nAnt = 30; % 麻雀个体数量
    maxIter = 500; % 最大迭代次数
    rho = 0.2; % 麻雀参数
    Q = 1.0; % 麻雀参数
    p = 0.7; % 麻雀参数
    damp = 0.9; % 缓冲因子
    iter = 0; % 迭代计数器
    nIter = 0; % 无人机航迹改善的迭代次数
    sol = zeros(n, 2); % 存储最优解
    vel = zeros(n, 2); % 存储速度
    pBest = zeros(n, 2); % 存储每个麻雀的最优解
    gBest = zeros(n, 2); % 存储全局最优解
    fitness = zeros(nAnt, 1); % 存储每个麻雀的适应度
    % 初始化位置和速度
    for i = 1:nAnt
        sol(i, :) = rand(1, 2) * (params.ub - params.lb) + params.lb;
        vel(i, :) = rand(1, 2) * 2 * (params.ub - params.lb);
        fitness(i) = calculateFitness(sol(i, :), params); % 适应度评估
        if fitness(i) < fitness(1)
            pBest(i, :) = sol(i, :);
            gBest(i, :) = sol(i, :);
        else
            pBest(i, :) = sol(1, :);
            gBest(i, :) = sol(1, :);
        end
    end
 
    % 麻雀搜索迭代
    while iter < maxIter
        for i = 1:nAnt
            % 更新速度和位置
            vel(i, :) = vel(i, :) * damp + rho * rand(1, 2) * (pBest(i, :) - sol(i, :)) + Q * rand(1, 2) * (gBest(1, :) - sol(i, :));
            sol(i, :) = sol(i, :) + vel(i, :);
            % 边界处理
            sol(i, sol(i, :) > params.ub) = params.ub;
            sol(i, sol(i, :) < params.lb) = params.lb;
            % 适应度评估
            newFitness = calculateFitness(sol(i, :), params);
            fitness(i) = newFitness;
            % 更新个体最优和全局最优解
            if newFitness < fitness(1)
                pBest(i, :) = sol(i, :);
                if newFitness < fitness(1)
                    gBest(i, :) = sol(i, :);
                end
            else
                pBest(i, :) = pBest(1, :);
            end
        end
        % 更新全局最优解
        [~, minFitIdx] = min(fitness);
        if fitness(minFitIdx) < fitness(1)
            gBest(1, :) = pBest(minFitIdx, :);
            fitness(1) = fitness(minFitIdx);
            nIter = iter;
        end
        iter = iter + 1;
    end
    % 输出结果
    sol = gBest(1, :);
    fitness = fitness(1);
2024-08-10

报错解释:

这个错误表明在使用HBase shell时,客户端尝试访问ZooKeeper中不存在的节点。KeeperErrorCode = NoNode 表示所请求的ZooKeeper节点不存在。

可能原因:

  1. HBase集群尚未启动或者服务未正确注册到ZooKeeper。
  2. 你尝试访问的HBase表或特定信息不存在。
  3. 网络问题导致ZooKeeper的连接丢失或不稳定。

解决方法:

  1. 确认HBase集群服务是否启动并且所有必需的服务都已在ZooKeeper中注册。
  2. 确认你尝试访问的HBase表或者其他元数据是否已经创建。
  3. 检查ZooKeeper的状态,确认服务运行正常,网络连接没有问题。
  4. 如果是临时性问题,可能只需要等待一会儿,或者重新启动HBase服务。
  5. 如果问题持续存在,可能需要检查HBase的配置文件,确认所有的配置都是正确的,包括ZooKeeper的quorum和port等信息。
2024-08-10

Greenplum 是一种大数据分析数据库,专为PB级的数据存储和复杂的分析查询进行了优化。HTAP(Hybrid Transactional/Analytical Processing)指的是既能进行事务处理(如在线交易),也能进行分析处理的数据库系统。

以下是一个简单的 SQL 示例,展示如何在 Greenplum 数据库中创建一个表并插入数据:




-- 创建一个简单的表
CREATE TABLE example_table (
    id INT PRIMARY KEY,
    name VARCHAR(100),
    value FLOAT
);
 
-- 插入数据
INSERT INTO example_table (id, name, value) VALUES (1, 'Item1', 100.0);
INSERT INTO example_table (id, name, value) VALUES (2, 'Item2', 200.0);
INSERT INTO example_table (id, name, value) VALUES (3, 'Item3', 300.0);
 
-- 查询数据
SELECT * FROM example_table;

这个例子展示了如何在 Greenplum 中创建一个简单的表,并向其中插入一些数据。然后,我们执行了一个查询来检索所有数据。这是一个典型的 HTAP 工作负载,同时满足在线事务处理和复杂分析的需求。

2024-08-10

在实现OAuth2协议的分布式授权中,通常涉及以下步骤:

  1. 资源拥有者(Resource Owner)向客户端(Client)授权。
  2. 客户端向授权服务器请求授权(获取临时凭证,如授权码)。
  3. 授权服务器验证资源拥有者,并确认授权后,向客户端提供授权凭证。
  4. 客户端使用授权凭证,向授权服务器请求访问令牌。
  5. 授权服务器验证凭证,如果有效,发放访问令牌。
  6. 客户端使用访问令牌,请求受保护的资源。
  7. 资源服务器验证访问令牌,并授予访问权限。

以下是一个简化的Python示例,使用Flask框架和Flask-OAuthlib扩展来实现OAuth2授权服务器:




from flask import Flask
from flask_oauthlib.provider import OAuth2Provider
 
app = Flask(__name__)
app.debug = True
app.secret_key = 'your_secret_key'
 
oauth = OAuth2Provider(app)
 
# 客户端凭证
clients = {
    'client-id': {
        'client_secret': 'client-secret',
        'redirect_uris': ['http://example.com/authorized'],
        'default_scopes': ['email'],
        'allowed_grant_types': ['authorization_code'],
    }
}
 
@app.route('/')
def index():
    return 'OAuth2 Provider'
 
if __name__ == '__main__':
    app.run()

这个示例展示了如何设置一个简单的OAuth2授权服务器。在实际应用中,你需要扩展以上代码来处理用户认证、授权、存储凭证等更复杂的逻辑。

2024-08-10



# 在Kubernetes集群中部署Jenkins主服务器
 
# 创建Jenkins主服务器的Docker Registry凭证
kubectl create secret docker-registry jenkins-docker-credentials \
  --docker-server=<DOCKER_REGISTRY_SERVER> \
  --docker-username=<DOCKER_USER> \
  --docker-password=<DOCKER_PASSWORD> \
  --docker-email=<DOCKER_EMAIL>
 
# 创建Jenkins持久化存储的StorageClass
kubectl apply -f jenkins-storageclass.yaml
 
# 创建Jenkins主服务器的配置文件
kubectl create configmap jenkins-config --from-file=jenkins.yaml
 
# 部署Jenkins主服务器
kubectl apply -f jenkins-deployment.yaml
 
# 暴露Jenkins服务,以便于从外部访问
kubectl apply -f jenkins-service.yaml

在这个例子中,我们首先创建了一个Docker Registry凭证,用于拉取Jenkins镜像。然后,我们创建了一个StorageClass资源,以便动态地为Jenkins提供持久化存储。接着,我们创建了一个ConfigMap,用于存储Jenkins的配置文件。最后,我们应用了Jenkins的Deployment和Service资源,以便在Kubernetes集群上部署和暴露Jenkins服务。

2024-08-10

Redisson提供了分布式的Java集合,例如分布式列表、分布式集合、分布式哈希和分布式有序集合等。这些集合都可以跨多个Redis节点进行水平扩展,并且提供了一系列的并发控制功能。

以下是一个使用Redisson创建分布式列表的简单示例:




import org.redisson.Redisson;
import org.redisson.api.RList;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;
 
public class RedissonExample {
    public static void main(String[] args) {
        // 配置Redisson客户端
        Config config = new Config();
        config.useSingleServer().setAddress("redis://127.0.0.1:6379");
        RedissonClient redisson = Redisson.create(config);
 
        // 获取分布式列表
        RList<String> list = redisson.getList("anyList");
 
        // 添加元素
        list.add("Redisson");
        list.add("Redis");
 
        // 获取列表大小
        int size = list.size();
        System.out.println("List size: " + size);
 
        // 关闭Redisson客户端
        redisson.shutdown();
    }
}

在这个例子中,我们首先配置了Redisson客户端连接到本地运行的Redis服务器。然后,我们获取了一个分布式列表对象,并向其添加了两个字符串元素。接着,我们获取并打印了列表的大小,最后关闭了Redisson客户端。

Redisson提供了丰富的API来操作Redis数据结构,并且支持多种集群方案、哨兵模式和主从模式,同时提供了分布式锁、队列、同步器等工具,方便开发者在分布式环境中进行开发。

2024-08-10

RIP(Routing Information Protocol)是一种内部网关协议(IGP),用于自动发现、维护网络的路由信息。以下是一个简单的RIP路由算法示例:




import time
 
def rip(network):
    distance_vec = {}  # 距离向量,记录到每个节点的距离
    link_cost = {(neighbor, 1) for neighbor in network.keys()}  # 链路开销
 
    # 初始化距离向量
    for destination in network.keys():
        if destination == 'A':  # 假设起点为A
            distance_vec[destination] = 0
        else:
            distance_vec[destination] = float('inf')
 
    # 循环更新路由信息,直到收敛
    while True:
        changes = set()
        for node in network.keys():
            for neighbor, cost in network[node]:
                new_distance = distance_vec[node] + cost
                if new_distance < distance_vec[neighbor]:
                    distance_vec[neighbor] = new_distance
                    changes.add(neighbor)
        if not changes:
            break  # 如果没有节点的距离发生变化,则停止更新
        time.sleep(1)  # 模拟路由更新延迟
 
    return distance_vec
 
# 示例网络拓扑
network_topology = {
    'A': [('B', 1), ('C', 2)],
    'B': [('A', 1), ('D', 1)],
    'C': [('A', 2), ('E', 3)],
    'D': [('B', 1), ('E', 2)],
    'E': [('C', 3), ('D', 2)]
}
 
# 执行RIP路由算法
distance_vector = rip(network_topology)
print(distance_vector)

OSPF(Open Shortest Path First)是一种链路状态路由协议,用于在单个自治系统(AS)内部工作。以下是一个简单的OSPF路由算法示例:




from collections import defaultdict
 
def ospf(network):
    neighbor_cost = defaultdict(dict)  # 邻居表和开销
    link_state_database = {}  # 链路状态数据库
 
    # 初始化邻居表和链路状态数据库
    for node in network:
        for neighbor, cost in network[node].items():
            neighbor_cost[node][neighbor] = cost
            link_state_database[neighbor] = {node: cost}
 
    # 循环更新链路状态数据库,直到稳定
    while True:
        changes = set()
        for node in neighbor_cost:
            for neighbor in neighbor_cost[node]:
                link_state_database[neighbor].update({node: neighbor_cost[node][neighbor]})
                changes.add(neighbor)
        if not changes:
            break  # 如果没有邻居的链路状态发生变化,则停止更新
 
    return link_state_database
 
# 示例网络拓扑
network_topology = {
    'A': {'B': 1, 'C': 2},
    'B': {'A': 1, 'D': 1},
    'C': {'A': 2, 'E': 3},
    'D': {'B': 1, 'E': 2},
    'E': {'C': 3, 'D': 2}
}
 
# 执行OSPF路由算法
link_state_db = ospf(network_topology)
print(link_state_db)

BGP(Border Gateway Protocol)是一种外部网关协议(EGP),用于自治系统之间的路由信息交换。由于BGP设计复杂且超出简单示例的范围,这里仅提供

2024-08-10

ELK指的是Elasticsearch、Logstash和Kibana的组合,这是一套用于日志管理和分析的开源工具。在Spring Cloud环境中,你可以使用Elasticsearch存储日志,Logstash来收集日志,Kibana来查看和分析日志。

以下是一个简化的指南,用于配置Spring Cloud微服务以将日志发送到ELK堆栈:

  1. 设置Elasticsearch服务器。
  2. 设置Logstash,用于监听日志并将其转发到Elasticsearch。
  3. 配置每个Spring Cloud微服务将日志发送到Logstash(通过Logback或Log4j)。
  4. 设置Kibana,用于查看和搜索Elasticsearch中的日志。

以下是一个简化的Logstash配置示例,用于监听微服务发送的日志事件,并将其转发到Elasticsearch:




input {
  tcp {
    mode => "server"
    host => "logstash.example.com"
    port => 4560
    codec => json_lines
  }
}
 
output {
  elasticsearch {
    hosts => ["elasticsearch.example.com:9200"]
    index => "spring-cloud-logs-%{+YYYY.MM.dd}"
  }
}

在Spring Cloud微服务中,你需要配置Logback或Log4j来将日志发送到Logstash。以下是一个Logback配置示例:




<appender name="LOGSTASH" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
  <destination>logstash.example.com:4560</destination>
  <encoder class="net.logstash.logback.encoder.LogstashEncoder" />
</appender>
 
<root level="INFO">
  <appender-ref ref="LOGSTASH" />
</root>

确保你的Spring Cloud微服务的pom.xml包含Logstash Logback Encoder依赖:




<dependency>
  <groupId>net.logstash.logback</groupId>
  <artifactId>logstash-logback-encoder</artifactId>
  <version>6.6</version>
</dependency>

这样配置后,微服务会将日志发送到Logstash,然后Logstash将这些日志转发到Elasticsearch,你可以使用Kibana来查看和搜索这些日志。

2024-08-10



<mapper namespace="com.example.mapper.UserMapper">
  <!-- 分页查询用户信息 -->
  <select id="selectUsersByPage" resultType="com.example.model.User">
    SELECT id, username, email
    FROM users
    ORDER BY id
    LIMIT #{offset}, #{pageSize}
  </select>
 
  <!-- 查询用户总数 -->
  <select id="getUserCount" resultType="int">
    SELECT COUNT(*) FROM users
  </select>
 
  <!-- 分布式数据库性能优化:使用数据库UUID生成唯一ID -->
  <insert id="insertUser" parameterType="com.example.model.User">
    INSERT INTO users (id, username, email)
    VALUES (REPLACE(UUID(),'-',''), #{username}, #{email})
  </insert>
</mapper>

在这个示例中,我们修复了SQL注入风险,并使用数据库UUID函数生成唯一ID,这样可以避免分布式环境下ID生成的潜在问题。这种方法在大型分布式系统中是一个可取的做法,它确保了数据的唯一性,同时避免了复杂的全局唯一ID生成器。