SpringCloud Sleuth 分布式请求链路跟踪

Spring Cloud Sleuth 提供了分布式请求跟踪的解决方案,可以帮助我们追踪请求在微服务系统中的传播路径。

以下是一个简单的例子,展示如何在Spring Cloud应用中集成Spring Cloud Sleuth进行请求链路追踪。

  1. 首先,在Spring Cloud项目的pom.xml中添加依赖:



<dependencies>
    <!-- Spring Cloud Sleuth -->
    <dependency>
        <groupId>org.springframework.cloud</groupId>
        <artifactId>spring-cloud-starter-sleuth</artifactId>
    </dependency>
    <!-- 其他依赖... -->
</dependencies>
  1. 接下来,确保您的应用程序使用了合适的Spring Cloud版本,并且已经启用了Zipkin服务追踪。
  2. 在您的应用程序的配置文件中(如application.properties或application.yml),配置Zipkin服务器的URL:



# application.properties
spring.zipkin.base-url=http://localhost:9411
spring.sleuth.sampler.probability=1.0 # 记录所有请求,可以根据需要调整采样率

或者使用YAML格式:




# application.yml
spring:
  zipkin:
    base-url: http://localhost:9411
  sleuth:
    sampler:
      probability: 1.0 # 记录所有请求
  1. 现在,您可以在代码中注入Tracer对象,并使用它来添加跟踪信息:



import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cloud.sleuth.Tracer;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
 
@RestController
public class TraceController {
 
    @Autowired
    private Tracer tracer;
 
    @GetMapping("/trace")
    public String trace() {
        return "Trace ID: " + tracer.getCurrentSpan().traceId();
    }
}
  1. 当您发送请求到这个端点时,Spring Cloud Sleuth将会生成跟踪信息,并将它发送到Zipkin服务器。

以上步骤展示了如何在Spring Cloud应用中集成Spring Cloud Sleuth进行请求链路追踪。记得启动Zipkin服务器,以便收集和查看跟踪信息。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日