马尔可夫链 (Markov Chains) 与隐马尔可夫模型 (Hidden Markov Models) 之间的区别

马尔可夫链(Markov Chains, MC)和隐马尔可夫模型(Hidden Markov Models, HMM)是概率论中两个核心概念,它们被广泛应用于自然语言处理、语音识别、生物信息学等领域。虽然二者关系密切,但有显著区别。本文将从理论、公式、应用及代码示例的角度,解析两者的区别和联系,帮助你轻松掌握这两个概念。


1. 马尔可夫链:定义与特性

1.1 定义

马尔可夫链是一个状态转移模型,它基于马尔可夫性假设:未来的状态只依赖于当前状态,与过去的状态无关。

数学定义
设有一组离散状态空间 ( S = {s_1, s_2, \dots, s_n} ),状态序列 ( X_1, X_2, \dots, X_t ) 满足:

\[ P(X_t = s_i \mid X_{t-1} = s_j, X_{t-2}, \dots, X_1) = P(X_t = s_i \mid X_{t-1} = s_j) \]

1.2 基本组成

  1. 状态集合 ( S ):模型可以取的所有可能状态。
  2. 状态转移概率矩阵 ( P )
\[ P_{ij} = P(X_{t+1} = s_j \mid X_t = s_i) \]

是一个 ( n \times n ) 的矩阵。

1.3 性质

  • 无记忆性:未来状态只依赖当前状态。
  • 时间独立性:转移概率与时间 ( t ) 无关。

1.4 示例:天气预测

假设天气可以是晴天 ((S)) 或雨天 ((R)),转移概率如下:

\[ P = \begin{bmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{bmatrix} \]
  • 从晴天到晴天的概率为 ( 0.8 )
  • 从雨天到晴天的概率为 ( 0.4 )

代码示例

import numpy as np

# 定义状态转移矩阵
states = ['Sunny', 'Rainy']
transition_matrix = np.array([[0.8, 0.2], [0.4, 0.6]])

# 初始状态分布
initial_state = np.array([1, 0])  # 起始状态:Sunny

# 模拟一个序列
n_steps = 10
current_state = initial_state
sequence = []

for _ in range(n_steps):
    sequence.append(np.random.choice(states, p=current_state))
    current_state = np.dot(current_state, transition_matrix)

print("Generated sequence:", sequence)

2. 隐马尔可夫模型:定义与特性

2.1 定义

隐马尔可夫模型是马尔可夫链的扩展,引入了不可观测(隐藏)状态的概念。在 HMM 中,我们只能观察到与隐藏状态相关的输出。

数学定义

  1. ( X_t ):隐藏状态序列。
  2. ( Y_t ):观测序列,依赖于隐藏状态。
  3. 隐藏状态的转移满足马尔可夫性:
\[ P(X_t \mid X_{t-1}, X_{t-2}, \dots) = P(X_t \mid X_{t-1}) \]
  1. 观测值与当前隐藏状态相关:
\[ P(Y_t \mid X_t, X_{t-1}, \dots) = P(Y_t \mid X_t) \]

2.2 基本组成

  1. 隐藏状态集合 ( S = {s_1, s_2, \dots, s_n} )
  2. 观测集合 ( O = {o_1, o_2, \dots, o_m} )
  3. 转移概率矩阵 ( A ):隐藏状态之间的转移概率。
  4. 观测概率矩阵 ( B ):隐藏状态到观测值的发射概率。
  5. 初始概率分布 ( \pi ):隐藏状态的初始概率。

2.3 示例:天气与活动

假设隐藏状态是天气(晴天、雨天),观测是活动(散步、购物、清理),概率如下:

  • 转移概率矩阵 ( A ):与马尔可夫链类似。
  • 发射概率矩阵 ( B )
\[ B = \begin{bmatrix} 0.6 & 0.3 & 0.1 \\ 0.3 & 0.4 & 0.3 \end{bmatrix} \]
  • 初始概率:([0.5, 0.5])

代码示例

# 定义发射概率矩阵
activities = ['Walk', 'Shop', 'Clean']
emission_matrix = np.array([[0.6, 0.3, 0.1], [0.3, 0.4, 0.3]])

# 模拟观测序列
hidden_states = ['Sunny', 'Rainy']
n_steps = 10
hidden_sequence = []
observed_sequence = []

current_state = np.array([0.5, 0.5])  # 初始分布

for _ in range(n_steps):
    # 生成隐藏状态
    hidden_state = np.random.choice(hidden_states, p=current_state)
    hidden_sequence.append(hidden_state)
    
    # 根据隐藏状态生成观测
    state_idx = hidden_states.index(hidden_state)
    observed = np.random.choice(activities, p=emission_matrix[state_idx])
    observed_sequence.append(observed)
    
    # 更新隐藏状态
    current_state = np.dot(current_state, transition_matrix)

print("Hidden states:", hidden_sequence)
print("Observed sequence:", observed_sequence)

3. 马尔可夫链与隐马尔可夫模型的区别

特性马尔可夫链 (MC)隐马尔可夫模型 (HMM)
状态类型可观测状态隐藏状态
输出状态序列观测序列
转移概率描述状态之间的转移概率描述隐藏状态之间的转移概率
发射概率不适用描述隐藏状态与观测的关联
应用场景天气预测、股票价格建模语音识别、分词、DNA序列分析

4. 图解

  1. 马尔可夫链
    马尔可夫链马尔可夫链

    图中节点表示状态,箭头表示状态转移概率。
  2. 隐马尔可夫模型
    隐马尔可夫模型隐马尔可夫模型

    图中隐藏状态与观测序列通过发射概率矩阵相连,隐藏状态间通过转移概率矩阵相连。

5. 总结

5.1 联系

  • HMM 是 MC 的扩展:HMM 在 MC 的基础上增加了不可观测的隐藏状态。

5.2 区别

  • 可见性:MC 直接观测状态,HMM 隐藏状态需要推断。
  • 复杂度:HMM 的模型包含更多概率分布,因此更复杂。

通过本文的解析和代码示例,希望你能清晰理解马尔可夫链与隐马尔可夫模型之间的区别,并能熟练应用它们解决实际问题!

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日