Diffusion Model 3:DDPM 逆扩散过程推导

Diffusion Model 3:DDPM 逆扩散过程推导

扩散模型(Diffusion Models)是近年来生成式建模中的重要技术,具有生成质量高、灵活性强的特点。DDPM(Denoising Diffusion Probabilistic Model)是扩散模型的经典代表,其核心思想是通过逐步添加噪声构造一个易于建模的分布,然后反向去噪生成高质量样本。

本文聚焦DDPM的逆扩散过程,从原理推导到代码实现,结合图解帮助你轻松掌握这一重要技术。


1. 什么是扩散模型?

扩散模型基于两个过程:

  1. 正向扩散(Forward Diffusion):从真实数据分布开始,通过逐步添加高斯噪声将其变换为标准正态分布。
  2. 逆向扩散(Reverse Diffusion):从标准正态分布出发,逐步去噪还原到数据分布。

2. DDPM的正向扩散过程

数学定义

正向扩散从真实数据 ( x_0 ) 开始,定义一系列中间状态 ( x_1, x_2, \dots, x_T ),满足以下条件:

\[ q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{\alpha_t} x_{t-1}, (1-\alpha_t)\mathbf{I}) \]

其中:

  • ( \alpha_t \in (0, 1) ) 是控制噪声强度的参数。

正向过程的多步表示为:

\[ q(x_t | x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t)\mathbf{I}) \]

其中 ( \bar{\alpha}_t = \prod_{s=1}^t \alpha_s )


3. 逆扩散过程推导

3.1 目标分布

逆扩散的目标是学习条件分布:

\[ p_\theta(x_{t-1} | x_t) \]

我们假设其形式为高斯分布:

\[ p_\theta(x_{t-1} | x_t) = \mathcal{N}(x_{t-1}; \mu_\theta(x_t, t), \Sigma_\theta(x_t, t)) \]

3.2 参数化过程

为了简化建模,通常假设 ( \Sigma_\theta(x_t, t) ) 是对角矩阵或常数,重点放在学习 ( \mu_\theta(x_t, t) )。通过变分推导可以得到:

\[ \mu_\theta(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \left( x_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_\theta(x_t, t) \right) \]

其中:

  • ( \epsilon_\theta(x_t, t) ) 是用于预测噪声的神经网络。

4. DDPM逆扩散过程实现

以下是用PyTorch实现DDPM的核心模块,包括正向扩散和逆向生成。

4.1 正向扩散过程

import torch
import torch.nn as nn
import numpy as np

class DDPM(nn.Module):
    def __init__(self, beta_start=1e-4, beta_end=0.02, timesteps=1000):
        super(DDPM, self).__init__()
        self.timesteps = timesteps
        self.betas = torch.linspace(beta_start, beta_end, timesteps)  # 噪声调度参数
        self.alphas = 1 - self.betas
        self.alpha_bars = torch.cumprod(self.alphas, dim=0)  # 累积乘积

    def forward_diffusion(self, x0, t):
        """正向扩散过程: q(x_t | x_0)"""
        sqrt_alpha_bar_t = torch.sqrt(self.alpha_bars[t]).unsqueeze(1)
        sqrt_one_minus_alpha_bar_t = torch.sqrt(1 - self.alpha_bars[t]).unsqueeze(1)
        noise = torch.randn_like(x0)
        xt = sqrt_alpha_bar_t * x0 + sqrt_one_minus_alpha_bar_t * noise
        return xt, noise

# 示例:正向扩散
timesteps = 1000
ddpm = DDPM(timesteps=timesteps)
x0 = torch.randn(16, 3, 32, 32)  # 假设输入图片
t = torch.randint(0, timesteps, (16,))
xt, noise = ddpm.forward_diffusion(x0, t)

4.2 逆扩散过程

逆扩散过程依赖一个噪声预测网络 ( \epsilon_\theta ),通常使用U-Net实现。

class UNet(nn.Module):
    def __init__(self, in_channels=3, out_channels=3, hidden_channels=64):
        super(UNet, self).__init__()
        self.encoder = nn.Sequential(
            nn.Conv2d(in_channels, hidden_channels, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.Conv2d(hidden_channels, hidden_channels, kernel_size=3, padding=1)
        )
        self.decoder = nn.Sequential(
            nn.Conv2d(hidden_channels, hidden_channels, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.Conv2d(hidden_channels, out_channels, kernel_size=3, padding=1)
        )

    def forward(self, x):
        return self.decoder(self.encoder(x))

# 逆扩散实现
def reverse_diffusion(ddpm, unet, xt, timesteps):
    for t in reversed(range(timesteps)):
        t_tensor = torch.full((xt.size(0),), t, device=xt.device, dtype=torch.long)
        alpha_t = ddpm.alphas[t].unsqueeze(0).to(xt.device)
        alpha_bar_t = ddpm.alpha_bars[t].unsqueeze(0).to(xt.device)
        sqrt_recip_alpha_t = torch.sqrt(1.0 / alpha_t)
        sqrt_one_minus_alpha_bar_t = torch.sqrt(1 - alpha_bar_t)
        
        pred_noise = unet(xt)
        xt = sqrt_recip_alpha_t * (xt - sqrt_one_minus_alpha_bar_t * pred_noise)

    return xt

# 示例:逆扩散
unet = UNet()
xt_gen = reverse_diffusion(ddpm, unet, xt, timesteps)

5. 图解DDPM逆扩散

正向扩散过程

  1. 数据逐步添加噪声,逐渐接近标准正态分布。
  2. 公式图示

    • ( x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon )

逆扩散过程

  1. 从随机噪声开始,通过逐步去噪恢复数据。
  2. 公式图示

    • ( x_{t-1} = \frac{1}{\sqrt{\alpha_t}}(x_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_\theta) )

6. 总结

本文从原理推导出发,详细解析了DDPM的逆扩散过程,结合代码示例和图解,帮助你理解扩散模型的核心思想。扩散模型正在快速成为生成式AI的关键技术,DDPM为实现高质量图像生成提供了一个强大的框架。未来,可以通过改进噪声调度或引入更多条件控制(如文本或标签)进一步增强其能力。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日