导出 Whisper 模型到 ONNX

导出 Whisper 模型到 ONNX

在本教程中,我们将展示如何将 OpenAI 的 Whisper 模型导出为 ONNX 格式。ONNX(Open Neural Network Exchange)是一种开放的神经网络交换格式,它支持跨平台和跨框架的模型部署。通过将 Whisper 模型导出为 ONNX 格式,可以在不依赖 PyTorch 的情况下使用该模型进行推理,从而提高模型的部署效率,特别是在生产环境中。

目录

  1. 什么是 Whisper 模型?
  2. 什么是 ONNX?
  3. 为什么将 Whisper 模型导出为 ONNX 格式?
  4. 环境准备
  5. 导出 Whisper 模型为 ONNX 格式
  6. 加载和使用 ONNX 格式的 Whisper 模型
  7. 常见问题与解决方法
  8. 总结

1. 什么是 Whisper 模型?

Whisper 是 OpenAI 提供的一个多语言自动语音识别(ASR)系统,能够处理多个语言的语音转文本任务。Whisper 模型采用了深度学习技术,具有强大的音频识别能力,适用于各种语音识别应用,包括实时语音识别、语音转写等。

Whisper 提供了多种预训练模型,支持多种语言和音频格式,能够在 CPU 和 GPU 上高效运行。


2. 什么是 ONNX?

ONNX(Open Neural Network Exchange)是一个开放的深度学习框架互操作性标准,它允许用户将模型从一个框架导出并导入到另一个框架中。ONNX 可以与许多常用的深度学习框架兼容,如 PyTorch、TensorFlow、Caffe2 和其他框架。通过将模型转换为 ONNX 格式,用户可以实现跨平台部署,减少框架依赖并提高推理效率。

ONNX 的主要特点包括:

  • 跨框架支持:ONNX 支持多种深度学习框架,可以将一个框架训练的模型导出并在另一个框架中使用。
  • 优化性能:ONNX Runtime 是一种高效的推理引擎,支持多种硬件加速技术,如 GPU 和 CPU。
  • 灵活性:通过将模型转换为 ONNX 格式,用户可以在各种设备上部署和运行模型。

3. 为什么将 Whisper 模型导出为 ONNX 格式?

将 Whisper 模型导出为 ONNX 格式,主要有以下几个优点:

  • 跨平台支持:ONNX 模型可以在不同的硬件平台和深度学习框架中使用。
  • 提高推理效率:ONNX Runtime 支持 GPU 加速,可以在推理过程中提高性能。
  • 部署灵活性:导出为 ONNX 格式的模型可以在多种推理环境中使用,包括服务器、边缘设备等。

4. 环境准备

为了导出 Whisper 模型到 ONNX 格式,首先需要安装相关的依赖。以下是需要安装的主要库:

  • torch:PyTorch 框架,用于加载和运行 Whisper 模型。
  • transformers:Hugging Face 提供的库,用于加载 Whisper 模型。
  • onnx:用于处理 ONNX 格式模型的库。
  • onnxruntime:ONNX 推理引擎,用于加载和运行 ONNX 格式的模型。

首先,安装所需的 Python 库:

pip install torch transformers onnx onnxruntime

5. 导出 Whisper 模型为 ONNX 格式

5.1 加载 Whisper 模型

我们首先需要从 Hugging Face 或 OpenAI 的官方模型库中加载 Whisper 模型。以下是加载 Whisper 模型的示例代码:

import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration

# 加载 Whisper 处理器和模型
model_name = "openai/whisper-large"
model = WhisperForConditionalGeneration.from_pretrained(model_name)
processor = WhisperProcessor.from_pretrained(model_name)

# 打印模型概况
print(model)

5.2 准备输入数据

Whisper 模型需要音频数据作为输入,我们需要准备一段音频并将其转换为 Whisper 模型可接受的格式。这里使用 torchaudio 来加载音频,并进行必要的处理。

import torchaudio

# 加载音频文件
audio_path = "path/to/audio/file.wav"
waveform, sample_rate = torchaudio.load(audio_path)

# 预处理音频数据,适配 Whisper 输入格式
inputs = processor(waveform, sampling_rate=sample_rate, return_tensors="pt")

5.3 导出为 ONNX 格式

将模型导出为 ONNX 格式时,我们需要确保模型的输入和输出能够被 ONNX 识别。以下是导出 Whisper 模型为 ONNX 格式的代码:

import torch.onnx

# 设置模型为评估模式
model.eval()

# 为了生成一个合适的 ONNX 模型,我们需要使用一个 dummy 输入
dummy_input = torch.randn(1, 1, 16000)  # 例如1个样本,1个通道,16000个样本的音频数据

# 导出模型到 ONNX 格式
onnx_path = "whisper_model.onnx"
torch.onnx.export(
    model,
    (dummy_input,),  # 输入元组
    onnx_path,  # 保存路径
    input_names=["input"],  # 输入节点名称
    output_names=["output"],  # 输出节点名称
    dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}},  # 允许批量大小动态变化
    opset_version=11  # 设置 ONNX opset 版本
)

print(f"模型已成功导出为 ONNX 格式:{onnx_path}")

5.4 验证导出的 ONNX 模型

导出完成后,我们可以使用 onnx 库和 onnxruntime 验证模型是否成功导出,并检查模型推理是否正常。

import onnx
import onnxruntime as ort

# 加载 ONNX 模型
onnx_model = onnx.load(onnx_path)

# 检查 ONNX 模型的有效性
onnx.checker.check_model(onnx_model)
print("ONNX 模型检查通过")

# 使用 ONNX Runtime 进行推理
ort_session = ort.InferenceSession(onnx_path)

# 准备输入数据(与模型输入格式一致)
inputs_onnx = processor(waveform, sampling_rate=sample_rate, return_tensors="np")

# 进行推理
onnx_inputs = {ort_session.get_inputs()[0].name: inputs_onnx["input_values"]}
onnx_output = ort_session.run(None, onnx_inputs)

# 打印推理结果
print(onnx_output)

6. 加载和使用 ONNX 格式的 Whisper 模型

导出为 ONNX 格式后,您可以使用 onnxruntime 来加载和推理 ONNX 模型。以下是加载和推理 ONNX 格式模型的示例代码:

import onnxruntime as ort

# 加载 ONNX 模型
onnx_session = ort.InferenceSession("whisper_model.onnx")

# 准备输入数据
inputs_onnx = processor(waveform, sampling_rate=sample_rate, return_tensors="np")

# 创建输入字典
onnx_inputs = {onnx_session.get_inputs()[0].name: inputs_onnx["input_values"]}

# 执行推理
onnx_output = onnx_session.run(None, onnx_inputs)

# 获取模型输出
print(onnx_output)

通过这种方式,您可以将 Whisper 模型转化为 ONNX 格式,并在没有 PyTorch 的环境下使用 ONNX Runtime 进行推理。


7. 常见问题与解决方法

7.1 问题:ONNX 导出过程中出现错误

解决方法:

  • 检查 PyTorch 版本是否支持当前导出的 opset 版本。
  • 确保输入数据与模型的预期输入格式一致。

7.2 问题:ONNX Runtime 推理结果不正确

解决方法:

  • 确保输入数据的预处理步骤与 PyTorch 中的预处理步骤一致。
  • 使用 onnxruntime 的日志功能查看详细的错误信息。

8. 总结

通过将 Whisper 模型导出为 ONNX 格式,您可以在多种平台和环境中高效地进行推理,尤其是在没有 PyTorch 的环境中。ONNX 格式使得模型的跨平台部署更加灵活,能够支持多种硬件加速。希望本教程能帮助您顺利完成 Whisper 模型的导出和部署。如果在操作过程中遇到问题,参考本教程提供的解决方案,逐步排查并解决问题。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日