AI绘画MJ和SD实测技巧:如何利用现有图片生成相似度高的新图像?

AI绘画MJ和SD实测技巧:如何利用现有图片生成相似度高的新图像

引言

AI绘画工具如 MidJourney(MJ)Stable Diffusion(SD),不仅可以根据文字生成图像,还能利用现有图片作为基础,生成具有高相似度的新图像。这样的功能非常适合用来扩展创意、调整图像风格或复用现有设计。

本文将通过实例和代码详细讲解如何利用 MJ 和 SD 生成高相似度的图片。文章涵盖以下内容:

  1. MidJourney 的图像提示(Image Prompt)技巧
  2. Stable Diffusion 的图像到图像(img2img)功能详解
  3. 实测效果对比与优化建议

1. MidJourney(MJ)利用图片生成相似图像

1.1 MJ 图片提示的基础用法

MidJourney 支持通过在提示词中加入图片 URL 来生成基于现有图片的相似图像。操作流程如下:

  1. 上传图片
    在 Discord 上找到 MidJourney 的频道,发送图片并右键获取 URL。示例:

    https://cdn.discordapp.com/attachments/.../example_image.png
  2. 组合图片和文字描述
    在提示词中添加图片 URL 和描述。例如:

    https://cdn.discordapp.com/.../example_image.png beautiful landscape, sunset, vibrant colors
  3. 生成图片
    MidJourney 会根据图片和描述生成图像。

1.2 提示词优化

为了提高生成图像与原图的相似性,可以尝试以下技巧:

  • 精准描述图片内容:如“a futuristic car in a neon-lit city”。
  • 使用特定风格关键词:如“cyberpunk style, photorealistic”。
  • 调整权重:给图片 URL 或文字描述增加权重(例如 ::2 表示权重为 2)。

示例:

https://cdn.discordapp.com/.../example_image.png::2 glowing cityscape, cyberpunk theme

1.3 注意事项

  • 图片的分辨率会影响生成效果,推荐使用高质量图片。
  • 图片 URL 必须是可访问的公开链接。

2. Stable Diffusion(SD)的图像到图像(img2img)功能

2.1 img2img 的作用

Stable Diffusion 的 img2img 功能可以直接对输入图片进行修改,保留图片的结构,并根据提示词生成具有相似风格的图像。

2.2 实现步骤

安装环境

如果你尚未安装 Stable Diffusion,请参考以下指令:

pip install diffusers transformers

代码示例

以下是利用 img2img 功能生成相似图像的完整代码示例:

from diffusers import StableDiffusionImg2ImgPipeline
import torch
from PIL import Image

# 加载模型
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = pipe.to("cuda")

# 加载原始图片
init_image = Image.open("example_image.png").convert("RGB").resize((512, 512))

# 定义提示词
prompt = "A futuristic car in a neon-lit city, cyberpunk style"

# 设置图像生成参数
strength = 0.6  # 控制原图与新图的相似度
guidance_scale = 7.5

# 生成相似图像
generated_image = pipe(prompt=prompt, init_image=init_image, strength=strength, guidance_scale=guidance_scale).images[0]

# 保存生成图像
generated_image.save("output_image.png")

2.3 参数详解

  • strength:控制原图与生成图像的相似度。值越小,生成图越接近原图;值越大,生成图越偏向提示词的内容。推荐范围:0.3-0.8
  • guidance_scale:提示词的影响权重。值越高,生成图像越符合提示词。推荐范围:7-10

3. 实测效果与优化技巧

为了获得最佳效果,建议结合以下方法:

3.1 MidJourney 优化

  • 使用多张参考图像:MidJourney 支持将多张图片合并生成新图,例如:

    https://image1.png https://image2.png futuristic style
  • 尝试不同权重组合,调试关键描述。

3.2 Stable Diffusion 优化

  1. 细化提示词:提供更具体的描述以提高生成质量。
  2. 控制相似度:通过调整 strength 精确匹配原始图片。
  3. 后处理工具:使用工具如 Photoshop 进一步调整图像细节。

4. MidJourney 与 Stable Diffusion 对比

特性MidJourneyStable Diffusion
易用性上手简单,无需编程需要一定的编程能力
定制化能力依赖提示词优化高度灵活,可深度定制
生成相似度更依赖风格描述可精确控制与原图相似度
处理速度快速响应(依赖服务器)本地运行,性能依赖硬件

5. 图解工作原理

以下是两者生成相似图像的工作流程图:

MidJourney 流程图

+-------------+     +------------------+     +------------------+
| 原始图片    | --> | 图片上传和描述   | --> | 生成新图像        |
+-------------+     +------------------+     +------------------+

Stable Diffusion 流程图

+-------------+     +------------------+     +------------------+     +------------------+
| 原始图片    | --> | 图像处理         | --> | 提示词生成        | --> | 输出相似图像      |
+-------------+     +------------------+     +------------------+     +------------------+

6. 总结

通过本文的学习,你应该已经掌握了如何利用 MidJourneyStable Diffusion 生成高相似度的新图像。从快速操作的 MJ,到高度可控的 SD,两者各具优势,适合不同的创意场景。

建议多次尝试不同参数和提示词,逐步优化生成效果,释放 AI 绘画的无限潜力!

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日