基于延迟叠加算法的聚焦超声波束合成 (DAS)

延迟叠加算法(Delay-and-Sum, DAS)是超声波成像领域中一种经典且高效的波束合成方法,广泛应用于医疗成像、无损检测以及声学信号处理等领域。它以其简单的实现和高效的性能成为超声波成像的核心算法之一。本文将介绍延迟叠加算法的基本原理、波束合成的关键步骤,并通过代码和图示展示如何实现聚焦超声成像。


目录

  1. 什么是延迟叠加算法 (DAS)
  2. 延迟叠加算法的工作原理
  3. 波束合成的关键步骤
  4. 图示:DAS在聚焦超声中的工作过程
  5. 代码示例
  6. DAS算法的优缺点
  7. 总结

什么是延迟叠加算法 (DAS)

DAS算法是一种基于波前校正的波束成像方法,通过计算每个换能器单元到成像点的声波传播时间,将接收到的信号按照延迟校正后进行叠加,从而实现对目标区域的成像和聚焦。


延迟叠加算法的工作原理

DAS算法的核心思想是利用换能器阵列接收到的超声信号,针对成像区域的每一个像素点:

  1. 延迟校正:计算该点与每个换能器之间的传播时间,并对接收到的信号进行相应延迟校正。
  2. 叠加求和:对校正后的信号进行幅值叠加,以增强目标区域的信号强度。
  3. 图像构建:将叠加后的结果赋值到成像网格上的对应位置,形成最终的图像。

波束合成的关键步骤

假设我们有一个由 (N) 个换能器单元组成的线性阵列,目标是对成像区域中的点 ((x, z)) 进行聚焦超声成像:

  1. 计算传播路径的延迟时间
\[ t_i(x, z) = \frac{\sqrt{(x - x_i)^2 + z^2}}{c} \]

其中,(t_i) 是第 (i) 个换能器到点 ((x, z)) 的传播时间,(x_i) 是换能器的横向位置,(c) 是介质中的声速。

  1. 信号延迟校正:将接收到的信号 (s_i(t)) 延迟至对应时间点 (t_i)
\[ s_i'(t) = s_i(t + t_i) \]
  1. 叠加信号:所有换能器校正后的信号求和:
\[ S(x, z) = \sum_{i=1}^{N} s_i'(t) \]
  1. 重复计算:对所有成像点 ((x, z)) 重复上述过程,最终生成图像。

图示:DAS在聚焦超声中的工作过程

以下图示展示了延迟叠加算法的工作原理:

  1. 换能器阵列布置在成像区域顶部。
  2. 超声波信号从目标点反射,经过不同路径到达换能器。
  3. 通过延迟校正,对所有接收信号进行时间对齐并叠加。

示意图

换能器阵列 (T1, T2, ..., Tn)
   ---------------------------------
     \       |       /        |
      \      |      /         |
       \     |     /          |
        \    |    /           |
         \   |   /            |
          * (成像点)

在实际实现中,这种延迟校正和叠加的计算是逐点进行的。


代码示例

以下代码示例基于Python实现DAS算法,用于模拟二维超声成像。

1. 环境准备

import numpy as np
import matplotlib.pyplot as plt

2. DAS算法实现

def das_beamforming(transducer_positions, signals, grid, sound_speed):
    """
    实现延迟叠加算法的超声成像。

    参数:
    - transducer_positions: 换能器阵列的横向坐标 (N,)
    - signals: 每个换能器接收到的信号 (N, T)
    - grid: 成像区域网格 (Mx, Mz, 2)
    - sound_speed: 介质中的声速

    返回:
    - image: 成像区域的聚焦信号强度 (Mx, Mz)
    """
    Mx, Mz, _ = grid.shape
    N, T = signals.shape
    image = np.zeros((Mx, Mz))

    for ix in range(Mx):
        for iz in range(Mz):
            x, z = grid[ix, iz]
            signal_sum = 0
            for i in range(N):
                # 计算到成像点的延迟时间
                delay = np.sqrt((x - transducer_positions[i])**2 + z**2) / sound_speed
                # 转换为采样点索引
                idx = int(delay * T)
                if idx < T:
                    signal_sum += signals[i, idx]
            image[ix, iz] = signal_sum
    return image

3. 模拟数据生成

# 模拟换能器阵列
N = 8  # 换能器个数
T = 1000  # 信号长度
c = 1500  # 声速 (m/s)
transducer_positions = np.linspace(-0.05, 0.05, N)  # 换能器横向位置 (m)

# 模拟信号
signals = np.random.rand(N, T)

# 创建成像网格
Mx, Mz = 100, 100  # 网格尺寸
x = np.linspace(-0.05, 0.05, Mx)
z = np.linspace(0.01, 0.1, Mz)
grid = np.array([[(xi, zi) for zi in z] for xi in x])

# 应用DAS算法
image = das_beamforming(transducer_positions, signals, grid, c)

4. 可视化结果

# 可视化成像结果
plt.imshow(image, extent=[x.min(), x.max(), z.min(), z.max()], aspect='auto', cmap='hot')
plt.colorbar(label="Amplitude")
plt.xlabel("X (m)")
plt.ylabel("Z (m)")
plt.title("DAS Beamformed Image")
plt.show()

DAS算法的优缺点

优点

  1. 简单易实现:算法逻辑直观,易于编码和硬件实现。
  2. 计算高效:适合实时成像应用。
  3. 硬件友好:可通过并行加速进一步提高性能。

缺点

  1. 成像分辨率有限:无法很好地抑制旁瓣和噪声。
  2. 对介质均匀性敏感:声速不均匀会导致延迟计算误差。
  3. 计算复杂度较高:对高分辨率成像区域可能计算耗时。

总结

基于延迟叠加算法的聚焦超声波束合成技术,是现代超声成像的重要基础。尽管DAS存在一些局限性,通过引入自适应波束合成方法(如MV、CF-DAS)可以进一步提升成像质量。在实际应用中,结合信号处理和硬件优化,可充分发挥DAS算法的潜力,实现更快速、更高质量的超声成像。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日