秒杀案例-分布式锁Redisson、synchronized、RedLock

在分析这三种分布式锁实现之前,我们需要明确一点,分布式锁主要用于在分布式系统中控制同一资源被多个节点同时操作。

  1. 使用Redis的setnx命令实现分布式锁

Redis的setnx命令可以设置一个键,当且仅当这个键不存在的时候。我们可以利用这个特性来实现分布式锁。




public boolean lock(String key, String uniqueId, int expireTime) {
    long result = jedis.setnx(key, uniqueId);
    if (result == 1) {
        jedis.expire(key, expireTime);
        return true;
    }
    return false;
}
 
public void unlock(String key, String uniqueId) {
    if (uniqueId.equals(jedis.get(key))) {
        jedis.del(key);
    }
}
  1. 使用Java的synchronized关键字实现线程安全

在Java中,我们可以使用synchronized关键字来实现线程安全。




public synchronized void criticalSection() {
    // 需要线程安全保护的代码
}
  1. 使用RedLock算法实现分布式锁

RedLock算法是Redlock-redis实现分布式锁的一种协议。它是一种更为复杂的分布式锁解决方案,通过使用N个独立的Redis节点来实现锁。




public boolean lock(List<Jedis> nodes, String resourceId, long ttl) {
    int quorum = nodes.size() / 2 + 1;
    long time = System.currentTimeMillis();
    long validityTime = time + ttl + 1;
    String lockKey = "lock:" + resourceId;
    String lockValue = String.valueOf(validityTime);
 
    int lockAcquired = 0;
 
    for (Jedis node : nodes) {
        if (node.setnx(lockKey, lockValue) == 1) {
            node.pexpire(lockKey, ttl);
            lockAcquired++;
        } else {
            long lockValidity = Long.parseLong(node.get(lockKey));
            if (lockValidity < time) {
                String oldLockValue = node.getSet(lockKey, lockValue);
                if (oldLockValue != null && Long.parseLong(oldLockValue) < time) {
                    node.pexpire(lockKey, ttl);
                    lockAcquired++;
                }
            }
        }
    }
 
    return lockAcquired >= quorum;
}
 
public void unlock(List<Jedis> nodes, String resourceId) {
    String lockKey = "lock:" + resourceId;
    for (Jedis node : nodes) {
        node.del(lockKey);
    }
}

以上三种方法各有优缺点,具体使用哪种方法需要根据实际情况来决定。例如,如果你的应用是单机应用,那么使用synchronized就足够了。如果你的应用是分布式应用,那么可能需要使用Redlock或者Redis的setnx命令来实现分布式锁。而Redis的setnx命令实现的分布式锁简单易用,但是如果Redis服务器宕机,那么所有的节点都将无法获得锁。而Redlock算法虽然复杂,但是能够提供更好的可靠性和安全性。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日