python3使用sqlite3构建本地持久化缓存




import sqlite3
from pathlib import Path
 
# 定义一个简单的函数来创建或获取已存在的数据库连接
def get_connection(db_file):
    return sqlite3.connect(db_file)
 
# 定义一个函数来获取缓存数据
def get_cached_data(connection, query):
    with connection:
        cursor = connection.cursor()
        cursor.execute(query)
        return cursor.fetchall()
 
# 定义一个函数来缓存数据
def cache_data(connection, query, data):
    with connection:
        cursor = connection.cursor()
        cursor.execute(query, data)
 
# 示例:使用sqlite3作为缓存系统
def example_usage():
    # 假设有一个缓存目录和数据库文件
    cache_dir = Path('./cache_dir')
    db_file = cache_dir / 'data.db'
    
    # 创建数据库连接
    connection = get_connection(db_file)
    
    # 假设我们要缓存的查询是获取所有用户
    query_get_users = "SELECT * FROM users;"
    
    # 获取缓存的数据,如果没有,就执行查询并缓存结果
    cached_data = get_cached_data(connection, query_get_users)
    if not cached_data:
        # 假设我们有一个查询来直接从数据库获取数据
        query_populate_cache = "INSERT INTO users (name, age) VALUES (?, ?);"
        # 假设我们有一些数据要插入缓存
        users_data = [('Alice', 30), ('Bob', 25)]
        # 缓存数据
        cache_data(connection, query_populate_cache, users_data)
        # 再次获取缓存数据
        cached_data = get_cached_data(connection, query_get_users)
    
    # 打印缓存的数据
    print(cached_data)
 
# 运行示例
example_usage()

这个代码示例展示了如何使用sqlite3作为一个简单的缓存系统。它定义了一个创建数据库连接的函数,一个获取缓存数据的函数,以及一个缓存数据的函数。如果没有缓存数据,它将执行查询来获取数据,并将其缓存起来供后续使用。这个例子假设有一个SQL表users存在于数据库中,并且有相应的插入和查询权限。

最后修改于:2024年09月09日 11:28

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日