分布式锁选型 Redis vs Zookeeper

在选择Redis或Zookeeper作为分布式锁的解决方案时,主要考虑以下因素:

  1. 性能:Redis是基于内存操作,性能最优。而Zookeeper虽然也是内存数据存储,但是有更复杂的同步协议和监听机制,可能会有性能损耗。
  2. 可靠性:Zookeeper有强一致性,可以保证在任何场景下数据的准确性和一致性。Redis需要客户端实现复杂的加锁解锁逻辑,且依赖Redis自身的可靠性。
  3. 功能特性:如果需要更高级的特性,比如分布式锁需要支持可重入、可过期、可查询锁状态等,Zookeeper提供的机制更加丰富。
  4. 开发成本:如果你的开发团队更熟悉Redis,那么使用Redis将更加方便。
  5. 运维成本:如果你的系统已经在使用Zookeeper作为服务协调,那么可能更倾向于继续使用Zookeeper。

示例代码:

Redis分布式锁(使用SET命令):




import redis
 
def acquire_lock(conn, lock_name):
    identifier = str(uuid.uuid4())
    end = time.time() + 10  # 10秒超时
    lock_name = 'lock:' + lock_name
    while time.time() < end:
        if conn.set(lock_name, identifier, ex=10, nx=True):
            return identifier
        time.sleep(0.001)
 
def release_lock(conn, lock_name, identifier):
    lock_name = 'lock:' + lock_name
    with conn.pipeline() as pipe:
        while True:
            try:
                pipe.watch(lock_name)
                if pipe.get(lock_name) == identifier:
                    pipe.multi()
                    pipe.delete(lock_name)
                    pipe.execute()
                    return True
                pipe.unwatch()
                break
            except redis.exceptions.WatchError:
                pass
    return False

Zookeeper分布式锁(使用临时序列节点):




from kazoo.client import KazooClient
 
def acquire_lock(zk, lock_path):
    lock = zk.Lock(lock_path, ephemeral=True)
    with lock:
        # 在这个区块内执行独占访问
        pass
 
def main():
    zk = KazooClient(hosts='127.0.0.1:2181')
    zk.start()
    lock_path = "/locks/my-lock"
    acquire_lock(zk, lock_path)
    zk.stop()
    exit()
 
if __name__ == "__main__":
    main()

在实际选型中,需要根据具体的应用场景和需求来决定最终使用哪种解决方案。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日