基于Hadoop的超市进货推荐系统设计与实现【springboot案例项目】
由于原始代码较为复杂且涉及到特定的数据处理和算法,我们无法提供一个完整的代码实例。但是,我们可以提供一个简化版本的核心函数,展示如何在Spring Boot应用程序中使用Hadoop进行基本的MapReduce任务。
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
@Service
public class HadoopMapReduceService {
@Autowired
private Configuration configuration;
public void runMapReduceJob(String inputPath, String outputPath) throws Exception {
Job job = Job.getInstance(configuration, "word count");
job.setJarByClass(HadoopMapReduceService.class);
job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(inputPath));
FileOutputFormat.setOutputPath(job, new Path(outputPath));
boolean success = job.waitForCompletion(true);
if (!success) {
throw new Exception("Job did not successfully complete");
}
}
public static class MyMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context) {
String line = value.toString();
String[] words = line.split("\\s+");
for (String w : words) {
word.set(w);
try {
context.write(word, one);
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
public static class MyReducer
评论已关闭