import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.time.Time;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
public class FlinkProcessBigData {
public static void main(String[] args) throws Exception {
// 创建流执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, Time.seconds(5)));
// 创建表执行环境
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
// 读取数据
DataStream<String> text = env.readTextFile("path/to/your/input/file");
// 转换数据
DataStream<Tuple2<String, Integer>> wordCount = text
.flatMap(new WordCount.Tokenizer())
.keyBy(0)
.sum(1);
// 创建表
tableEnv.createTemporaryView("WordCountTable", wordCount, "word", "count");
// 执行SQL查询
Table resultTable = tableEnv.sqlQuery("SELECT word, SUM(count) AS total FROM WordCountTable GROUP BY word");
// 转换回DataStream
DataStream<Row> result = tableEnv.toChangelogStream(resultTable);
// 输出结果
result.print();
env.execute("Flink Word Count Example");
}
public static class Tokenizer implements MapFunction<String, Tuple2<String, Integer>> {
@Override
public Tuple2<String, Integer> map(String value) {
return new Tuple2<>(value.toLowerCase(), 1);
评论已关闭