MongoDB与HBase:非关系型数据库的对比与分析




# 导入必要的模块
import pandas as pd
 
# 创建MongoDB和HBase的数据框,并进行比较
mongo_data = {'Collection Size (MB)': [10, 20, 30],
              'Read Latency (ms)': [1, 2, 3],
              'Write Latency (ms)': [10, 20, 30]}
hbase_data = {'Region Count': [100, 200, 300],
              'Read Latency (ms)': [10, 20, 30],
              'Write Latency (ms)': [50, 100, 150]}
 
# 将数据转换为pandas数据框
mongo_df = pd.DataFrame(mongo_data)
hbase_df = pd.DataFrame(hbase_data)
 
# 打印数据框
print("MongoDB DataFrame:")
print(mongo_df)
print("\nHBase DataFrame:")
print(hbase_df)
 
# 进行比较,合并数据框,并打印结果
comparison_df = pd.concat([mongo_df, hbase_df], axis=1)
comparison_df.columns = ['MongoDB Collection Size (MB)', 'MongoDB Read Latency (ms)', 'MongoDB Write Latency (ms)',
                         'HBase Region Count', 'HBase Read Latency (ms)', 'HBase Write Latency (ms)']
print("\nComparison DataFrame:")
print(comparison_df)

这段代码首先导入了必要的模块,并创建了模拟的MongoDB和HBase的数据。然后,它使用pandas将这些数据转换为数据框,并打印出来。最后,它通过pandas的concat函数合并两个数据框,并打印出合并后的数据框,以便进行比较。这个过程展示了如何将两个不同类型的数据库(一个是键值存储型,一个是列族型)的数据进行整合和对比。

最后修改于:2024年09月06日 10:09

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日