Redis梦幻整合:解锁数据的神秘力量
在Redis和梦幻 srv的整合中,我们可以利用Redis的分布式锁特性来保证数据的一致性。
解决方案:
- 使用Redis的SETNX和EXPIRE命令实现分布式锁。
def acquire_lock(conn, lock_name, acquire_timeout=10, lock_timeout=10):
identifier = str(uuid.uuid4())
end = time.time() + acquire_timeout
lock_name = 'lock:' + lock_name
while time.time() < end:
if conn.setnx(lock_name, identifier):
conn.expire(lock_name, lock_timeout)
return identifier
time.sleep(0.001)
return False
def release_lock(conn, lock_name, identifier):
lock_name = 'lock:' + lock_name
pipe = conn.pipeline(True)
while True:
try:
pipe.watch(lock_name)
if pipe.get(lock_name) == identifier:
pipe.multi()
pipe.delete(lock_name)
pipe.execute()
return True
pipe.unwatch()
break
except redis.exceptions.WatchError:
pass
return False
- 使用Redlock算法来实现更安全的分布式锁。
import redis
import time
import uuid
class Redlock(object):
def __init__(self, servers, lock_timeout=1000, retry_count=3, retry_delay=100):
self.servers = servers
self.lock_timeout = lock_timeout
self.quorum = len(servers) / 2 + 1
self.retry_count = retry_count
self.retry_delay = retry_delay
def _get_redis_client(self, server):
return redis.StrictRedis(host=server.split(':')[0], port=int(server.split(':')[1]), decode_responses=True)
def _lock(self, client, lock_name):
identifier = str(uuid.uuid4())
end = time.time() * 1000 + self.lock_timeout
lock_name = 'lock:' + lock_name
while time.time() * 1000 < end:
if client.set(lock_name, identifier, ex=self.lock_timeout, nx=True):
return identifier
time.sleep(0.001)
return False
def _unlock(self, client, lock_name, identifier):
lock_name = 'lock:' + lock_name
pipe = client.pipeline(True)
while True:
try:
pipe.watch(lock_name)
if pipe.get(lock_name) == identifier:
pipe.multi()
pipe.delete(lock_name)
pipe.execute()
return True
pipe.unwatch()
break
except redis.exceptions.WatchError:
pas
评论已关闭