从零开始的LLaMA-Factory的指令增量微调
import os
import subprocess
# 设置环境变量
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
# 定义运行命令的函数
def run_cmd(cmd):
subprocess.run(cmd, check=True)
# 设置LLaMA-Factory的路径
llama_factory_path = "/path/to/llama-factory"
# 设置LLaMA的路径
llama_path = "/path/to/llama"
# 设置数据集路径
data_path = "/path/to/data"
# 设置输出目录
output_dir = "/path/to/output"
# 设置LLaMA-Factory的版本
version = "v0.1.0"
# 执行命令
run_cmd([
"python", os.path.join(llama_factory_path, "run_factory.py"),
"--model_path", llama_path,
"--data_dir", data_path,
"--output_dir", output_dir,
"--version", version,
"--do_train",
"--train_batch_size", "1",
"--eval_batch_size", "1",
"--learning_rate", "3e-4",
"--max_steps", "100",
"--gradient_accumulation_steps", "16",
"--num_train_epochs", "1",
"--overwrite_cache",
"--use_auth_token",
])
这个代码实例展示了如何设置环境变量,定义一个函数来运行命令,并使用LLaMA-Factory工具进行微调。需要注意的是,这里的路径应该根据实际情况进行替换,并且需要确保LLaMA-Factory工具已经正确安装在指定的路径中。
评论已关闭